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Abstract. The seagrass ecosystem is renowned for making substantial contributions to preserving the 

balance of marine ecosystems, it offers significant ecological and financial benefits. The rising carbon 

emissions from several human activities may increase global warming. One method for reducing carbon 

emissions is to use blue carbon or coastal flora such as seagrass. The seagrass ecosystem has the 

potential to significantly absorb and store carbon permanently. This study aimed to quantify the density 

of seagrass Percent Cover (PCv) and aboveground carbon stocks (AGC) in the waters surrounding 

Manado City, North Sulawesi Province. The survey technique and location were selected with the help of 

purposeful sampling, while the seagrass data were collected using the line transect quadrant method 

with an area of 100 x 100 cm2 to the LIPI seagrass monitoring method. A total of 6 sites was determined 

for 193 sample plots, consisting of 72 for accuracy calculations and 121 for the regression model. The 

seagrass carbon stocks were determined using information on the cover percentage. The results showed 

that 6 types of seagrass were identified, namely Enhalus acoroides, Thalassia hemprichii, Syiringodium 

esoetifolium, Cymodecea rotundata, Cymodecea serrulata, Halodule pinifolia, and Halophila ovalis. T. 

hemprichii and E. acoroides accounted for 20.33% of the total cover, each. Station 4 had the highest 

concentration of seagrass AGC stock, measured by a field sample, at 11.180 g C m-2, while Station 1 had 

the lowest concentration, measured by a field sample at 6.748 g C m-2. The water area in Manado City 

fell into the medium category with an average percentage seagrass cover of 50.40%. The seagrass AGC, 

or total ecosystem carbon store, determined based on the linear regression model, was of approximately 

10.773 tons of carbon. In PCv and AGC accuracy analysis, seagrass PCv in B5 had an R2 value of 0.32, 

with a linear regression RMSE=25.61%, a Pearson correlation r=0.59, and a Squared Pearson correlation 

R2=0.35. The linear regression mapping results showed that PCv was mostly found in the dense class 

(50–75%) and close to coastal waters. This study suggested that linear regression was a better method 

than RFR for the seagrass AGC analysis. 
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Introduction. Seagrass, classified as angiosperm, is known to flourish in shallow marine 

and estuarine environments, thriving while submerged in water. These plants consist of 
leaves, sheaths, rhizomes (creeping stems), and roots. The research carried out by 

Wagey et al (2023) identified a total of 8 seagrass species within three coastal waters 
located in the Minahasa Peninsula, which is situated in North Sulawesi, Indonesia. A 

study carried out by Supriyadi et al (2023) discovered 8 seagrass species that were 
documented in Kendari, located in Southeast Sulawesi, Indonesia. Sondak & Kaligis 

(2022) conducted a research in North Sulawesi, Indonesia, specifically focusing on the 
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Wori Sub-district, where a total of 6 seagrass species were identified. Seagrass is 

essential for the ecosystem: as a primary producer, it generates oxygen and organic 
matter through photosynthesis. Consequently, seagrass beds serve as crucial feeding, 

spawning, and nursery grounds for marine life (Bortone 2000). 
Nienhuis (2002) underscored the significance of the coastal zone in supporting a 

substantial portion of the living marine resources worldwide, with seagrass being one of 

the most valuable. Hogarth (2007) further outlined the ecological importance of seagrass 
environments, delineating the multifaceted roles, including providing breeding and 

nursery sites for fish, stabilizing sediment, and sequestering carbon. Despite the 
indispensable ecological functions, seagrass habitats face mounting pressures from both 

anthropogenic activities and natural impacts (Nadiarti et al 2012). A study reported a loss 
reaching 30% of seagrass beds in Indonesia (UNEP/GEF 2004). The significance of 

seagrass is underscored by the Seagrass Condition Assessment Monitoring Guidebook 
(Rahmawati et al 2017). The diverse roles include acting as a filtering medium for 

shallow seawater, providing habitat for various marine biota namely baronang/ingkis fish, 

shellfish, crabs, and sea cucumbers. Seagrass serves as a breeding ground for juvenile 
marine life, offers sustenance for humans, provides refuge for endangered species 

including dugongs and turtles, while also mitigating beach erosion by reducing wave 
energy. Moreover, these plants contribute to climate change mitigation and adaptation. 

Seagrass meadows, as elucidated by Mckenzie & Yoshida (2009), are exceptionally 
productive ecosystems, offering up to 27 times more habitable substrate than non-

vegetated areas. Previous studies show that seagrass meadows host approximately 40 
times more creatures than dry sand areas (Humphries 1991; Acosta 1999; Bologna & 

Heck 2002; Kendrick 2002; Merryanto et al 2022). Understanding the spatial distribution 

and characteristics of seagrass resources is crucial for an effective management. Coastal 
managers require detailed maps depicting the occurrence and abundance of species, as 

insights into the details of the response to human-induced changes, and information on 
the potential for the restoration of damaged meadows (Savini & Gai 2023; Uku et al 

2021). Informed management decisions about recovery, restoration, and the facilitation 
of natural spatial dynamics necessitate knowledge of historical seagrass distribution 

(McKenzie 2003). Coastal managers must consider where seagrass may have existed 
historically to devise comprehensive strategies for sustainable management. This 

knowledge will contribute to the conservation and sustainable use of the ecosystem. 

To effectively map the aboveground carbon (AGC) stock of seagrass by integrating 
remote sensing and field data, comparable field data are crucial. These field data serve 

the dual purpose of training the regression model and assessing the accuracy of the 
resultant map (Hossain et al 2015; Tamondong et al 2018). However, acquiring such 

data through conventional means is problematic due to its damaging, expensive, and 
time-consuming nature. This underscores the pressing need to devise a rapid, non-

destructive approach for estimating AGC in seagrass, which can be used in training and 
validating remote sensing-based AGC mapping techniques (Misbari 2017). To address the 

escalating environmental degradation, it has become increasingly important to accurately 

map both the distribution and quantity of seagrass. These mapping endeavors hold 
significant value for coastal area management and conservation strategies. Remote 

sensing technology, renowned for its accessibility and wide coverage, has been a staple 
for decades in mapping and monitoring coastal and shallow marine environments. By 

leveraging image processing techniques and insights into potential carbon reserves within 
seagrass beds, remote sensing facilitates the management of carbon stores in coastal 

regions and small islands (Rais et al 2023; Green et al 2000). Successful applications 
have enabled the mapping of key metrics such as leaf area index, seagrass PCv, and AGC 

stock (Wicaksono & Hafizt 2013; Wicaksono et al 2019a; Wicaksono et al 2021). These 

advancements have paved the way for a comprehensive understanding of seagrass 
ecosystems and the carbon storage potential. 

This study aimed to estimate AGC seagrass information utilizing easily measurable 
PCv data and to create maps at community levels using WorldView-2 images. To achieve 

this, two specific objectives were proposed: (1) estimating AGC seagrass from the PCv at 
the community level, and (2) evaluating the accuracy of the resulting maps. This 
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investigation focused on the waters adjacent to Manado City in North Sulawesi Province, 

aiming to quantify the density of seagrass cover percent (PC) and AGC stocks in 
seagrass. 

 
Material and Method 

 

Description of the study sites. This research was carried out in the waterways of 
Bunaken District, Manado City, within the North Sulawesi Province (Figure 1). Seagrass 

species such as Thalassia hemprichii and Enhalus acoroides thrive in shallow waters with 
sandy and muddy bottoms. Additionally, other species including Syiringodium 

isoetifolium, Cymodecea rotundata, Cymodecea serrulata, Halodule pinifolia, and 
Halophila ovalis inhabit the area.  

 

 
Figure 1. Map of the study area. 

 

Seagrass beds have various configurations depending on the species present, appearing 
either as continuous, mixed, or patchy formations. Benthic organisms, including coral 

reefs and macrobenthos, coexist in the study area. The seagrass ecosystems under 
investigation were located specifically within the Bunaken National Park (TN) area, as 

designated by the Minister of Forestry's Decree Number: SK. 734/Menhut-II/2014 
(Government of Indonesia 2014). According to the Regional Regulation of North Sulawesi 

Province Number 1 of 2017 (North Sulawesi Province 2017), known as the Zoning Plan 
for Coastal Areas and Small Islands of North Sulawesi Province (RZWP3K), spanning over 

the period 2017-2037, these seagrass ecosystems fall within the Conservation Area. 

Based on Regional Regulation Number 1 of 2023 (Manado Municipal Government 2023), 
which pertains to the Regional Spatial Plan of Manado City (RTRW) for the years 2023-

2042, these ecosystems are situated within the Protected Area of the Bunaken National 
Park management region. The area has diverse geomorphic benthic habitats, including 

reef flat, back reef, reef crest, fore reef, and cliff formations. Seagrass beds 
predominantly occur on the coastline, intermixed with substrates classified into four 

types, namely muddy, sandy, rubble, and reef flat. This complex substrate composition 
posed a challenge for accurate mapping efforts. 
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Field data collection and handling. A total of 6 study stations (ST) were established 

within the waters of Manado City, from which a total of 193 samples measuring seagrass 
cover percentages were collected. These samples were divided into 121 data points for 

constructing the regression model and 72 for accuracy assessment (Figure 2). Field data 
on percent seagrass cover were obtained using the photo-square technique, with 1 m² 

plot sizes within seagrass beds, along with photo-transect techniques (Roelfsema et al 

2014). The seagrass cover percentage refers to the projected horizontal coverage in 
square units, estimated based on the identified species within the sampled areas. The 

locations for sampling were determined by observing variations in cover apparent in the 
original composite remote sensing imagery (true color RGB 5,3,2). The identified 

seagrass species within the study area included E. acoroides, T. hemprichii, Syiringodium 
esoetifolium, C. rotundata, C. serrulata, H. pinifolia, and H. ovalis. These samples were 

crucial in estimating the AGC derived from seagrass PCv at the community level.  
 

 
Figure 2. Location map of regression models and accuracy test samples. 

 
This study used simple linear regression analysis to determine the linearity of the 

dependent variable with the independent. The relationship between the seagrass cover 
and the raster value of WorldView-2 imagery in each band produced the best equation for 

modeling the PCv map. Similarly, the amount of AGC was regressed with the raster value 
of WorldView-2 imagery in each band. The best regression results were applied to the 

seagrass AGC mapping model. The next step was to classify the percentage of seagrass 
cover created with the random forest regression (RFR) algorithm, using the EnMAP-Box 

2.2.1 plugin. The input used was the result of seagrass masking through the WV-2 

image. Furthermore, the regression and test samples were used as inputs in making the 
carbon stock estimation map. AGC maps were obtained using the RFR algorithm, which 

utilized a set of decision tree classifiers to classify data. Integrated in-situ benthic habitat 
data and processing of WorldView-2 (WV2) image were used to parameterize the 

machine-learning algorithm (RF). Based on previous reports, it is recommended to use 
the more general classification scheme to avoid several issues regarding benthic habitat 

variations. The result also established the possibility of mapping a benthic habitat without 
the use of training areas. Moreover, image processing was conducted using an RFR 

algorithm in mapping seagrass carbon stocks. 

A collection of decision tree classifiers was used by the RF algorithm to categorize 
data. To parameterize the machine-learning algorithm (RF), Wicaksono et al (2019b) 

combined the image processing of WorldView-2 (WV2) images with the in situ data on 



AACL Bioflux, 2024, Volume 17, Issue 2. 
http://www.bioflux.com.ro/aacl 727 

the benthic habitat. To avoid several problems related to changes in the benthic habitat, 

a more general classification scheme should be used in the RF model. The outcome also 
demonstrated that a benthic environment might be mapped without the need for training 

areas. Rais et al (2023) also studied the mapping of seagrass carbon stocks by image 
processing with an RFR approach. 

 
Image correction. Atmospheric correction was carried out to reduce errors caused by 
disturbances such as scattering due to gases contained in the atmosphere. This stage 

used the Fast line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 
method implemented through the image processing software (ENVI 2009). The model 

input parameters included the initial visibility=77km, the atmospheric model: tropical, 

off-nadir angle’s average=18.68834, with an image location in the Manado City area. 
FLAASH is an absolute atmospheric correction method that considers in more detail 

conditions such as aerosols at the time of recording. The raw data image used as input 
was calibrated in radian values, resulting in the unit of µW cm-2sr-1nm-1 while the 

corrected WorldView-2 image is shown in Figure 3.  
 

 
Figure 3. Masking satellite imagery of the study area and spatial distribution of 

seagrasses with natural/true color (band 532). 

 

The minimum negative value in each image channel could be considered a recording 
error because the number of pixels with a negative value was lower in the image scene. 

The results of the FLAASH correction map were then converted to a digital number range 
of 0-1 and applied to all bands with the equation: 

 
(b1 le 0)*0+(b1 ge 10000)*1+(b1 gt 0 and b1 lt 10000)*float(b1)/10000  
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 The WorldView-2 Multispectral Imagery (1.8 m, 8 bands, Level 2A) comprises 4 

standard bands of red, green, blue, and near-infrared1, plus 4 bands of coastal, yellow, 
red edge, and near-infrared2. The sun glint correction process in the bands was observed 

and significantly altered the reflections of the benthic habitat in most parts of the scene, 
to a minimum. Removal was carried out using a formula incorporating the near infrared 

band as described in Hedley et al (2005) and Kay et al (2009). The WorldView-2 image 

specification has 2 near-infrared bands, selecting the best near-infrared band to correct 
sun glint in the visible band. Each visible band was regressed in both near-infrared 

bands. The data for the regression analysis comprised the optical reflection of deep water 
at various sunlight intensities. Furthermore, the regression analysis was carried out to 

obtain the slope of the regression (calibration gradient) required to eliminate sunlight in 
the visible band using the near-infrared band (Wicaksono 2016; Wicaksono & Hafizt 

2013). Water column correction was not carried out because the conditions during the 
satellite image recording were in the low tide range, hence, some locations in the seabed 

were shallow and the seagrass ecosystem was exposed to the surface. Ampou et al 

(2018) showed that for the benthic habitat in Bunaken Island it is not necessary to carry 
out a water column correction, due to the narrow range of depths found in the reef flat. 

Another study conducted by Ilyas et al (2020) reported that the application of treatments 
with and without water column correction in mapping benthic and seagrass habitat 

ecosystems using several classification algorithms produced accurate, but not 
significantly different results. The topographic conditions of the study area correspond to 

the 2nd-order polynomial transformation. In the rectification stage, the resample type was 
cubic convolution and the number of GCPs required for geometric correction was eight 

points. The geometric correction was conducted through the image-to-image method to 

associate the pixels on the satellite image with the actual location on Earth with a total 
RMS error of 0.689207. Furthermore, the image orthorectification process used the 

WorldView-2 image map acquired in 2015, with a spatial resolution of 0.5m for the 
Manado City Detailed Spatial Plan (RDTR) which has been orthorectified by the Geospatial 

Information Agency with a scale of 1:5000. Ground control points (GCPs), identifiable 
features such as docks, road intersections, building corners, and others were used for a 

more precise mapping. Map accuracy was based on Geospatial Information Agency 
Regulation Number 6 of 2018 concerning Amendments to Regulation Number 15 of 2014 

concerning Technical Guidelines for Base Map Accuracy (HGIA 2018). The 

orthorectification results with a Total RMS Error of 0.689207 was achieved on a scale of 
1:2500, meeting the criteria for a class one map accuracy. 

A summary of the WorldView-2 image’s characteristics used in this study is 
presented in Table 1.  

 
Table 1 

WorldView-2 image specifications 
 

Characteristics Information 

Image name WorldView-2 
Acquisition time May 25, 2021 

Spatial resolution 
<pixelHeight>2.077 m 

<pixelWidth>1.988 m 

Spectral resolution 

Band Coastal blue (B1), Wavelength: 400 to 450 nm 

Band Blue (B2), Wavelength: 450 to 510 nm 
Band Green (B3), Wavelength: 510 to 580 nm 

Band Yellow (B4), Wavelength: 585 to 625 nm 
Band Red (B5), Wavelength: 630 to 690 nm 

Band Red Edge (B6), Wavelength: 705 to 745 nm 
Band NIR-1 (B7), Wavelength: 770 to 895 nm 

Band NIR-2 (B8), Wavelength: 860 to 1040 nm 

Panchromatic, Wavelength: 450 to 800 nm 
Radiometric resolution 16-bit 

System coordinates UTM Zone 51N 
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The WorldView-2 image used in this study was acquired by the National Aeronautics and 

Space Administration (NASA) on May 25, 2021, and subsequently provided to the 
government. This acquisition occurred at 14:44 GMT local time, capturing the Manado 

City area with the sun azimuth at 44.638493 and an elevation of 61.96089. The image 
comprised conventional water penetration bands blue, green, and red alongside three 

novel bands cyan, yellow, and red. The inclusion of these bands was crucial for extracting 

information from the intricate seagrass ecosystems due to the ability to penetrate 
different depths based on light and water conditions. The image acquisition process used 

2 bytes per pixel, with a 16-bit radiometric resolution and 2-meter spatial resolution. 
However, it is important to acknowledge the 11-bit (0-2048) natural dynamic range of 

WorldView-2 images. Despite the recent availability of WorldView-3 imagery, offering 
additional features, the quantity of water penetration bands is comparable to that of 

WorldView-2 (DigitalGlobe 2016). The distinguishing factor lies in its introduction of 
shortwave infrared band sets.  

 

Benthic habitat mapping. The seagrass mask was created from a visual interpretation 
based on local knowledge and direct field observation. Processed satellite images were 

then categorized using an unsupervised Isodata algorithm approach of 17 classes with 
Envi software. Afterwards, the results of the Isodata algorithm approach for unsupervised 

classification were eliminated, leaving only the area identified as seagrass class. 
Furthermore, the results of ground truth samples were used to compare with the resulted 

seagrass classes, and the geoprocessing was carried out with the ArcMap software. 
Multiple input datasets were combined into a single, new output dataset. This tool can 

combine point, line, polygon feature classes, or tables. The calculation results estimated 

the seagrass area in Manado City waters to be ±136.75 ha. 
 

Seagrass PCv mapping. The method used in the seagrass monitoring activities at the 
study site was a quadratic transect, perpendicular to the shoreline (McKenzie et al 2003;   

McKenzie 2003), and consisting of transects as well as frames. The transect is a straight 
meter line drawn over the seagrass bed, while the square is an equilateral rectangular 

frame placed on the line. Seagrass cover was interpreted directly in the field, and the 
results of the plots were geotagged with the Zone 51 N UTM coordinate system from the 

Garmin Oregon GPS Type 750. Assessment and identification of seagrass cover was 

conducted using standards (Rahmawati et al 2017). Assessors observed the 
characteristics of the substrate visually and by twisting using the hands, then observed 

that the characteristics of the substrate were divided into muddy, sandy, rubble (coral 
fragments), and reef flat. 

 
Seagrass AGC mapping. Seagrass species with a higher percentage value of closure 

were more dominant on the permanent monitoring transect at the observed station. The 
next step was to estimate the AGC of the seagrass. Calculation of seagrass carbon stock 

was carried out using an allometric approach based on the regression equation 

(Wicaksono et al 2021) presented in Table 2. The calculation was performed by 
measuring the actual cover of seagrass species in the field to obtain data, which were 

then converted into a regression equation. Seagrass species are mapped to perform the 
masking on the AGC mapping. 

 
Table 2 

Seagrass aboveground carbon stocks (AGC) equation 
 

No Species of seagrass Formula References 

1. Enhalus acoroides y=0.3179(PCEa)+0.6295 

Wicaksono et al (2021) 

2. Thalasia hemprichii y=0.1069(PCTh)+0.0951 

3. Syiringodium esoetifolium y=0.00268(PCSe)-0.0022 

4. Cymodecea rotundata y=0.0604(PCCr)-0.1767 
5. Halodule pinifolia y=0.0604(PCHp)-0.1767 

6. Halophila ovalis y=0.00268(PCHo)-0.0022 
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Linear regression. In simple linear regression, a criterion variable was predicted from 

one predictor (Baeza-Serrato & Vázquez-López 2014). Wicaksono & Hafizt (2013) 
conducted a regression analysis between seagrass PCv and leaf area index (LAI) at the 

community and species levels. The study used simple linear regression to compare the 
PCv values of seagrasses in the field with the raster values on WV-2 satellite imagery. A 

similar procedure was performed for seagrass AGC in the field and rasterized values on 

WV-2 satellite imagery. The best equation results were used to model the PCv and AGC 
maps. The analysis was then continued to compare the modeling of PCv and AGC maps 

using Machine-Learning RF. 
 

Random forest regression (RFR). The RF algorithm used in this study was based on 
Breiman (2001). RF is an ensemble classification method for classifying trees and the 

algorithm can produce a good classification result even though there are many outliers in 
the training (Pal 1996). To obtain the RFR model, the RF algorithm was tuned using the 

following parameters: (1) dataset regression, validation sample, and image satellite, (2) 

a number of trees=100, (3) a number of feature parameters and the square root of all 
features. The Fast Accuracy Assessment of an RFR model will show three windows. The 

first produces a textual report of the residual statistics, including the values for RMSE, 
Pearson correlation r, and Squared Pearson correlation R2. 

 
Accuracy assessment. The accuracy test in this study used Root Mean Squared Error 

(RMSE), Pearson correlation (r), and Squared Person correlation (R2) performed on the 
PCv map and AGC map.  

 

Flowchart. A study flowchart can help understand and illustrate the key steps required 
in this process. In this context, the flowchart (Figure 4) offers guidance on the 

measurement and analysis steps required to evaluate the seagrass cover percentage and 
estimate the amount of stock carbon stored aboveground using satellite imagery. 
 

 
Figure 4. Process flow chart for mapping PCv and AGC fo seagrass using WorldView-2's 

passive remote sensing technology. 
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Results. According to the Seagrass Assessment Monitoring Guide, Edition 2, developed 

by the Oceanographic Research Center-LIPI (Rahmawati et al 2017), the Manado City 
water area has an average seagrass cover of 50.40%, placing it within the medium 

category. Figure 5 shows the percentage distribution of seagrass cover and the prevailing 
species’ type. Station 4 recorded the highest value at 76.49%, predominantly 

characterized by T. hempricii at 20.14%. Conversely, Station 1 had the lowest coverage 

at 30.94%, with the dominant species being H. ovalis at 0.21%. As shown in Figure 5, 
significant differences in seagrass coverage were observed across various sites. 

Specifically, ST4 had the most extensive onsite coverage at 76.49%, while ST1 showed 
the least coverage at 30.94%. 

 

  
Figure 5. Dominance of seagrass species. 

 

Photos of several types of seagrass species found in the waters of Manado City are 
presented in Figure 6. 

 

 
Figure 6. Photos of seagrass species. 

 

Environmental parameters result. Seagrass ecosystems in the waters of Manado City 
play a critical role in coastal habitats and are influenced by a myriad of interacting 

environmental and physical factors. Environmental parameters include the surrounding 
conditions, while physical parameters comprise water temperature, salinity, and pH 

levels. Optimal water temperature is crucial for seagrass growth and reproduction, but 
extreme fluctuations can induce stress and even result in death. Similarly, water salinity 

plays an essential role, as seagrasses thrive within specific ranges. Some areas within the 

plots showed slight turbidity due to sediment mixing with the substrate. Table 3 and 
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Figure 7 present the sampling of PCv, AGC, as well as environmental and physical 

parameters affecting seagrass ecosystems. PCv data was obtained from the result of 
assessing the percentage of seagrass density in each transect/plot and then averaged. 

Meanwhile, AGC estimation was analyzed using the equation (Wicaksono et al 2021) and 
PCv. The analysis results of both were then modeled with the raster value of the WV-2 

image using the linear regression method. The observed physical parameters across all 

stations had a consistent range with temperatures falling within 31.3 to 34.6°C, salinity 
of 30 ppm and 34 ppm, while the pH values varied between 7.46 and 8. 

  
Table 3 

Environmental parameters 
 

Station Time Weather Mangrove Brightness Dock River Residents Depth Activity 

ST1 
10.30-
12.30 

Sunny A Simply NA NA NA 
0-20 
cm 

None 

ST2 
9.30-
11.45 

Sunny A Simply NA NA NA 
5-15 
cm 

None 

ST3 
9.50-
11.50 

Sunny A Simply NA NA NA 
0-20 
cm 

None 

ST4 
9.50-
11.50 

Sunny A Simply NA NA NA 
0-25 
cm 

None 

ST5 
12.05-

14.10 
Rainy A 

Slightly 

turbid 
A NA A 

5-30 

cm 
A 

ST6 
12.15-
14.05 

Sunny A Simply A NA NA 
10-50 

cm 
None 

A-available; NA-not available.  

 

 

 
Figure 7. Physical parameters PCv and AGC of seagrass. 

 

Photo quadrant result. Data collection was carried out on three transects with a length 
of 100 m each and an interval of 50 m (Figure 8), resulting in a total area of 100 x 100 

m2. Quadratic frames were placed on the right side of the transect at a distance of 10 m 

from each other, totaling 11 squares on each transect. The starting point was placed at a 
distance of 5–10 m from the first point where seagrass was encountered, starting from 

the coast. 
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Figure 8. (a) Photo of plot quadrant size 1 m2, (b). Photo of seagrass sampling process. 

 
Seagrass Percent Cover linear regression. The regression analysis conducted using 

satellite image raster values B1-B8 (Table 4), in comparison to the PCv of seagrass 
observed in the field, showed that B5 had the highest R2 value of 0.328 (Figure 9). The 

specifications of the Red 5 Band (630-690 nm) (DigitalGlobe 2009) primarily focused on 

the absorption of red light by chlorophyll in healthy plant material. PC of seagrass in the 
field showed that B5 had the best R2 of 0.328. The equation results of B5 y=(-

905.51*B5)+82.169 were modeled in the distribution map and then classified in the PCv 
map of seagrass distribution, based on the Seagrass Cover Category (Rahmawati et al 

2017). The empirical modeling of PCv using WorldView-2 image was performed with the 
linear regression analysis. The spatial distribution was the highest around ST4 and the 

lowest at ST1. The results of linear regression mapping showed the dominant seagrass 
PCv in the dense class (50%-75%) and located along the coastal waters (Figure 10). 

 

Table 4 
Equation regression PCv 

 

Band Equation R² 

Band 1 y=-2150x+70.252 0.229 

Band 2 y=-1538.3x+97.426 0.316 
Band 3 y=-838.36x+83.336 0.262 

Band 4 y=-749.1x+80.967 0.267 
Band 5 y=-905.51x+82.169 0.328 

Band 6 y=87.292x+46.703 0.005 
Band 7 y=186.92x+41.367 0.044 

Band 8 y=220.94x+47.834 0.009 

 

 
Figure 9. Plot of the B5-based seagrass distribution vs the seagrass PCv. 

(a) 
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Figure 10. Linear PCv of seagrass map; RMSE=25.61%, Pearson correlation r=0.59, 

Squared Pearson correlation R2=0.35. 
 

Random forest. The results of RFR mapping of seagrass PCv estimation using EnMAP-
Box 2.2.1 software are shown in Figure 11. RF had a dominant seagrass PCv in the dense 

class (50%-75%), scattered on the coastal areas. This shows a difference with the results 
of the linear regression in the dense class. 

 

 
Figure 11. RFR estimation map of Seagrass PCv; RMSE=25.87%, Pearson correlation 

r=0.63, Squared Pearson correlation R2=0.40. 
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The scatter plot showed values of the validation reference against the RFR PCv 

estimation in Figure 12. Based on the graphical plot of the reference data and the 
estimation trend, the PCv estimation results have an underestimated value. 

 
Figure 12. Graph of the validation reference against the RFR PCv estimation.  

 

The estimation model’s values do not increase at the same rate as the reference 
value, due to the blurred image factor, as seagrass and muddy waters were not well 

separated. Mangrove ecosystems also have an influence due to the mud substrate, 

affecting the extraction of pixel values to obtain the best R2 value. Another influential 
factor was the absence of water column correction in the satellite images. The medium 

seagrass PCv area near the shoreline further added complexity to the analysis. The 
values should be positioned along the diagonal, showing that all estimated values were 

equal to the reference. The graph below shows that Band 5 (B5=red) is most commonly 
used in RF iterations (Figure 13). 

  

 
Figure 13. Normalized variable importance in the RFR model of seagrass PCv (the 

variable index stands for the color band, B1 to B8). 

 
Seagrass reflectance has certain spectral characteristics that reflect light, 

including the red band. Image analysis in the red band can help identify and map 
seagrass locations (Rahman & Wicaksono 2019). Previous RMSE analysis showed that 
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PCv mapping using a linear regression approach provided better results than RFR 

modelling, although not significantly different. 
 

AGC seagrass linear regression. The process of extracting the raster value of each 

band from B1-B8 was regressed with the total seagrass AGC to produce a predicted 
equation for each band. The results for each band were obtained by extracting the raster 

value of the WV-2 satellite image with each pixel of the test and of the regression model 
sample. By using a correlation analysis between the raster value (x-axis) of each band, 

compared to the total AGC g C m-2 (y-axis), the best regression result was found for the 
Band Blue (B2), with the wavelength: 450 to 510 nm and R²=0.3759. The regression 

graph of raster values B1-B8 with seagrass AGC is shown in Table 5.  

 
Table 5 

Equation regression AGC 
 

 

 
Figure 14. Plot of the B2-based seagrass distribution vs the AGC of seagrass. 

 

The R2 value of 0.3759, implies that about 37.6% of the variation in the 

dependent variable can be explained by the independent variable in the regression model 
used, while the raster value band results were used to calculate the RMSE (Figure 14). 

The specifications of the Blue band (450-510 nm) (DigitalGlobe 2009) include: 1). 
Readily absorbed by chlorophyll in plants, 2). Provides good penetration of water, 3). The 

Blue band is less affected by atmospheric scattering and absorption compared to the 
Coastal Blue band. 

The results of the B2 regression model in Figure 14 were then converted to pixels 
by eliminating all Digital Number (DN) less than 0. Using a raster calculator, the 

eliminated map was multiplied by the pixel area WV-2=4.12 m2 (rounded down to 4 m2). 

Further processing was conducted using zonal statistics as a table tool in the ArcMap 
software to calculate statistics on values of a raster within the zones of another dataset. 

Band Equation R² 

Band 1 y=-379.85x+12.368 0.3278 
Band 2 y=-247.7x+16.436 0.3759 

Band 3 y=-133.49x+14.109 0.3055 
Band 4 y=-119.49x+13.741 0.3125 

Band 5 y=-142.7x+13.872 0.3741 
Band 6 y=-10.639x+9.377 0.0033 

Band 7 y=10.513x+8.3792 0.0064 

Band 8 y=-4.9395x+8.9619 0.0002 
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The results of the calculations showed a total seagrass AGC of 10.773 ton carbon. The 

spatial distribution was highest around ST4 and lowest at ST1. The seagrass AGC 
classification map was divided into five classes, as shown in Figure 15.  

 

 
Figure 15. Linear AGC seagrass mapping at the community level, with RMSE=3.708 g C 

m-2, Pearson correlation r=0.57, Squared Pearson correlation R2=0.33 

 
The linear regression mapping results had dominant seagrass AGC in the >9 g C 

m-2 class and were scattered along the coastal waters. The next step was to calculate the 
RMSE, representing the AGC estimation of each prediction accuracy. This was conducted 

by calculating the AGC model data and field test/validation results. 
 

Random forest. ImageRF is an Interactive Data Language (IDL) based tool for the 
supervised classification and regression analysis of remote-sensing image data. It 

implements the machine-learning approach of RF (Breiman 2001) that uses multiple self-

learning decision trees to parameterize models for estimating categorical or continuous 
variables. The results of RF mapping had dominant seagrass AGC in the >9 g C m-2 class, 

and were located scattered along the coastal waters of Manado City (Figure 16). In the 
linear regression map, dominant seagrass was found in the waters of Tongkaina Village, 

Bunaken District to the north compared to the RFR map for the same location. 
The scatter plot shows values of the validation reference against the RFR 

estimation. Based on the plot graph of the reference data and the estimated trend in 
Figure 17, the estimated AGC result had an underestimated value. As the reference value 

increased, the estimation model did not generate a comparable trend. In an ideal 

scenario, the value should be positioned along the diagonal, showing that all estimated 
values are equal to the reference (Wicaksono & Harahap 2023). Given that the muddy 

seas and seagrass were not clearly separated, the blurred image component caused the 
reference validation value of the RFR AGC estimation result to be underestimated. This 

impacted the extraction of pixel values, obtaining a suboptimal R2. The AGC region of 
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medium seagrass abundance, close to the coast, further added to the complexity of the 

analysis. 
 

 
Figure 16. RFR estimation map for the seagrass AGC; RMSE=3.742 g C m-2, Pearson 

correlation r=0.60, Squared Pearson correlation R2=0.36 

 

 
Figure 17. Graph of the validation reference against the RFR AGC estimation. 

 
 Band 5 was most frequently used in RF iterations, as depicted in the graph below 

(Figure 18). The specifications of the Band 5 Red (B5) with wavelength: 630 to 690 nm 

include: 1). Better focused on the absorption of red light by chlorophyll in healthy plant 
materials, 2). One of the most important bands for vegetation discrimination, 3). Very 

useful in classifying bare soils, roads, and geological features (DigitalGlobe 2009). 
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Figure 18. Normalized variable importance in the seagrass AGC model (the variable index 

stands for the color band, B1 to B8). 

 
The RMSE analysis results, depicted above, suggested that modeling the AGC with 

a linear regression approach yielded a better outcome, although not statistically different, 
than modeling the AGC with an RFR model approach. 

 
Discussion. This study used PCv as a rapid and non-destructive method to estimate the 

AGC of seagrass communities. Following the evaluation of the Manado City waters using 

the land cover categories, as outlined by Rahmawati et al (2017), the field survey 
recorded a medium-level seagrass coverage of 50.40% at the community level. Station 4 

had the highest cover at 76.488%, with T. hempricii being the dominant species at 
20.14%. In contrast, Station 1 had the lowest species coverage at 30.938%, with H. 

ovalis accounting for merely 0.21%, as the dominant species. A study by Togolo et al 
(2023) conducted around the ST5 (Tongkaina Village) area identified T. hemprichii as the 

type with the highest coverage percentage, reaching 30.08%. 
The percentage of seagrass cover was obtained by B5 with R²=0.32. PCv linear 

regression analysis of the seagrass map resulted in RMSE=25.61%, Pearson correlation 

r=0.59, and Squared Pearson correlation R2=0.35. The linear regression mapping results 
showed the dominant seagrass PCv in the dense class (50-75%) located along the 

coastal waters. RFR Estimation Map resulted in RMSE=25.87%, Pearson correlation 
r=0.63, and Squared Pearson correlation R2=0.40. The RF result indicated the dominant 

seagrass PCv in the dense class (50-75%) near the shoreline. This shows a different class 
than for the linear regression. Based on the RMSE values, the linear regression analysis 

results were better than those of RF. 
Seagrass AGC was obtained with B2, by a linear regression analysis mapping at 

the community level, with R²=0.37 with RMSE=3.70 g C m-2, Pearson correlation r=0.57, 

and Squared Pearson correlation R2=0.33. The results of linear regression mapping 
showed dominant seagrass AGC in the >9 g C m-2 class and were scattered along the 

coastal waters. RFR Estimation Map of AGC Seagrass resulted in RMSE=3.74 g C m-2, 
Pearson correlation r=0.60, and Squared Pearson correlation R2=0.36. The results of RF 

mapping had dominant seagrass AGC in the >9 g C m-2 class and were scattered along 
the coastal waters of Manado City, showing a different map class from the linear 

regression distribution’s class. The linear regression analysis results outperformed the RF, 
as demonstrated by the RMSE values. Effectively using maps aids in communicating 

study results to stakeholders and the general public, thereby contributing to the 

conservation and management of seagrass ecosystems in the waters of Manado City. 
These efforts play a crucial role in bolstering the sustainability of marine environments 

and supporting initiatives aimed at mitigating climate change impacts. The accuracy of 
AGC seagrass mapping depends on three key factors, namely water brightness, the glint 

effect, and the timing of image acquisition during the lowest tides. These factors pose 



AACL Bioflux, 2024, Volume 17, Issue 2. 
http://www.bioflux.com.ro/aacl 740 

challenges, particularly when image capture does not agree with field data collection. 

Future studies using multispectral imagery, such as the high-resolution WorldView-3 with 
1.24 m multispectral capability, superior to WV2, offer promising solutions. This 

advanced technology enables sharper image acquisition, reducing errors caused by mud 
sediments covering seagrasses. Consequently, it minimizes the impact on reflectance 

values, crucial for the empirical model of seagrass AGC. This study focused solely on the 

assessment of AGC within the seagrass community, yielding a linear AGC mapping with 
RMSE=3.708 g C m-2. In comparison, Wicaksono et al (2021) achieved a value of 5.41 g 

C m-2 with 58.79% accuracy, extending the investigation to the species level. To enhance 
accuracy, it is advisable to conduct further AGC mapping studies at the species level, as 

recommended by Wicaksono et al (2021). The regression equation developed in this 
study will significantly enhance the availability of seagrass AGC data, particularly for the 

species considered. 
 

Conclusions. The current study estimated the seagrass carbon stocks in Manado City 

waters through remote sensing, by using the WV-2 high-resolution satellite imagery. The 
estimated value was 10.773 ton of AGC organic carbon with the average percentage of 

seagrass cover in the field being 50.40%, falling in the medium category with an area of 
±133.11 ha. B5 has a PCv of seagrass with R2=0.328, while the linear regression resulted 

in an RMSE=25.61%, Pearson correlation r=0.59 and Squared Pearson correlation 
R2=0.35. Based on the results of linear regression mapping, the seagrass PCv 

predominated in the dense class (50–75%) and was found near coastal waters. RFR 
estimation map of seagrass PCv resulted in RMSE=25.873, Pearson correlation r=0.63, 

and Squared Pearson correlation R2=0.40. The seagrass PCv observed in the RF results 

was predominantly found in the dense class (50–75%) near the shoreline. This RFR map 
was in a different class than with the linear regression. AGC seagrass obtained through 

B2 with R²= 0.3759 and the linear regression analysis of mapping at the community level 
resulted in RMSE=3.70 g C m-2, Pearson correlation r=0.57, and Squared Pearson 

correlation R2=0.33. According to linear regression mapping results, seagrass AGC was 
distributed throughout coastal waters and was predominant in the >9 g C m-2 class. The 

map of RFR estimation of the seagrass AGC yielded RMSE=3.742 g C m-2 Pearson 
correlation r=0.60, and Squared Pearson correlation R2=0.36. The RF mapping results 

showed that seagrass AGC was prominent in the >9 g C m-2 class, and was distributed 

across the coastal waters. The difference map between the plot of the results and the 
distribution was predicted by linear regression. The RMSE results on PCv and AGC 

showed that the linear regression analysis performed better than the RF. Based on the RF 
Variable Importance in the PCv and AGC image, B5 red was the band the most often 

used in iterations. The linear regression was identified as a better method than RF for 
seagrass AGC analysis, although the difference was not statistically significant. 
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