
AACL Bioflux, 2023, Volume 16, Issue 2. 

http://www.bioflux.com.ro/aacl 909 

 
 

Water quality, plankton community and primary 

productivity of Langiran Lake in Bayambang, 

Pangasinan, Philippines 
1Dante M. Mendoza, 2Michelle G. B. Aquino, 3Mark P. Tandoc, 4Karen B. B. 
Briñas, 5Doname A. Reyes, 6Maureen G. Tamayo, 2Alvin T. Reyes 

 
1 Pampanga State Agricultural University, Magalang, Pampanga, Philippines; 2 Central 

Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines; 3 Benguet State 

University, La Trinidad, Benguet, Philippines; 4 Bicol University-Tabaco Campus, Tabaco, 

Albay, Philippines; 5 Isabela State University, Roxas City, Isabela, Philippines; 6 Laguna 

Polytechnic State University, Los Baños, Laguna, Philippines. Corresponding author: D. 

Mendoza, dante_mendoza@psau.edu.pg 

 
Abstract. The importance of water quality, plankton community and primary productivity has long been 
recognized in fish propagation under confinements and management of surface waters. Hence, this study 
was conducted to generate salient information that could help the local government of Bayambang, 
Pangasinan, Philippines to its plan in maximizing the services provided by the Langiran Lake. Qualitative 
and quantitative analyses were conducted in-situ and ex-situ to determine the level of important water 
quality variables, plankton composition and abundance and primary productivity of the lake. Water 
transparency, turbidity, dissolved oxygen (DO) and PO4 did not conform with the standards set by the 
Department of Environment and Natural Resources of the Philippines. A total of 14 genera belonging to 5 
groups of phytoplankton and were identified. In terms of zooplankton, there were 9 identified and 2 
unidentified genera under 5 groups. Chlorophytes had the highest number of representatives. However, 
bacillariophyte is the most abundant group in the phytoplankton division, while copepod dominates in the 
zooplankton community. The net primary productivity (NPP) of the lake ranged from 6.34 mg C m-3 hr-1 
(Station 4) to 12.72 mg C m-3 hr-1 (Station 2), with a mean of 8.55 mg C m-3 hr-1. DO, salinity and total 
coliform showed highly significant relationship (p<0.01) with ciliates, copepods and rotifers, respectively. 
Meanwhile, TAN showed significant positive relationship with NPP (p<0.05). With regard to trophic status, 
the lake is already eutrophic. This suggests that the lake is presently not favorable for aquaculture activities 
and it is recommended for the implementation of such management actions. 
Key Words: eutrophication, Langiran Lake, phytoplankton, trophic status, zooplankton. 

 

 

Introduction. The province of Pangasinan located in the northwestern part of Luzon Island 

in the Philippines is the third biggest province of the country with a total land area of 

5451.01 km2, with a coastline of 285.66 km. The province devoted more than 44% of its 

land area to crop production and is considered one of the top producers of agricultural 

products, especially rice in the country (RealPhil.com 2019). In addition, it is also endowed 

with rich natural resources within its vast mountains and aquatic environments. The coastal 

areas, especially the Lingayen Gulf, is a major site for capture and culture fisheries 

(Pangasinan Provincial Planning and Development Office 2019). Freshwater resources on 

the other hand also play an important role ecologically and economically.  

 The province is drained by 9 major river systems, of which the most important is 

Agno River, with a length of 270 km. These river systems supply household and agricultural 

waters. Moreover, the province harbors 3 major lake habitats, including Danao in Burgos, 

Mangabol and Langiran in Bayambang (PhilAtlas). There are also smaller lakes like Lalwan 

and Pacao in San Carlos City and Laloog in Mangatarem (Mapcarta). Although not as 

extensive as the coastal and riverine habitats, the lakes still provide significant 

contributions to the locality by supporting tourism, fishing and farming activities. However, 

studies conducted regarding these lakes are still limited. Hence, information is scarce, 

particularly on their water quality and productivity. In the municipality of Bayambang, only 

Mangabol Lake has been assessed for water quality and some of its associated ichthyofauna 
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(Sunga & Pridas 2015). Langiran Lake remains unassessed. Based from the report of 

Austria (2018), the Langiran Lake is eyed as a tourism spot by the municipal government. 

Moreover, development efforts also target the maximization of the resource through the 

production of fish using floating cages.  

 In accordance with these objectives, this study aims to produce a clear description 

of water quality conditions and primary productivity of the lake in order to prevent 

irreversible consequences. In addition, such information could also be used in managing 

existing lake resources to maintain ecological equilibrium. 

 

Material and Method 

 

Sampling sites. The study was conducted in Langiran Lake, one of the major inland water 

bodies of Bayambang, Pangasinan on October 14-18, 2022. Four sampling sites were 

established in the study area, specifically in the nearshore (near houses and rice paddies) 

and limnetic zones (open area and near water hyacinth mats) of the lake. The geographic 

position (Table 1) of these sampling sites was determined using a built-in phone GPS 

receiver and a map (Figure 1) was generated using a computer software. 

 

Table 1 

Geographic position and description of the sampling sites in Langiran Lake 

 

Sampling site Coordinates Description 

 Latitude Longitude  

Station 1 15°49’55.05”N 120°24’7.02”E 
Littoral zone; near the road 

and houses. 

Station 2 15°49’58.71”N 120°24’7.38”E Littoral zone; rice paddies. 

Station 3 15°49’55.34”N 120°24’11.67”E Limnetic zone; open area. 

Station 4 15°49’58.53”N 120°24’5.19”E 
Limnetic zone; near water 

hyacinth infested area. 

 

 
 

Figure 1. Map showing the sampling stations in Langiran Lake (exported from Google 

Earth). 

 

Water quality assessment. Water quality parameters were assessed (with triplicates) 

using digital equipment and laboratory techniques. The depth was measured using a digital 

depth meter (Hondex PS-7). The measurement was recorded to the nearest meter (m). 

Transparency was measured using a Secchi disc and also expressed to the nearest meter 

(m). The turbidity, water temperature, salinity, dissolved oxygen (DO), and pH were also 
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assessed on-site using a handheld multi-parameter water quality checker (Horiba 

Advanced Techno Co., Ltd., Japan). Other chemical parameters such as ammonia (TAN), 

nitrite (NO3) and total phosphate (PO4) were analyzed at the Bureau of Fisheries and 

Aquatic Resources – National Fisheries Development Center (BFAR-NFDC). 1 L of water 

samples was collected from each sampling site using polyethylene plastic (PE) containers 

and transported to the laboratory at low temperature. Samples were processed in 

accordance with standard laboratory procedure of the BFAR–NFDC. The absorbance of the 

processed samples for TAN, NO2 and PO4 was read in spectrophotometer (UVS-2700 model 

of Labomed, Inc., Los Angeles, USA) using 625 and 885 wavelengths. The concentrations 

were calculated using the following equation: 

 

Concentration = [Concentration of standard solution x (SV – BV)]/(SSV – BV) 

 

Where: SV is the absorbance of the standard solution, BV is the absorbance of the blank 

and SV is the absorbance of the sample.  

 Chlorophyll-a concentration was analyzed following the methods of Aminot & Rey 

(2001). A 150 mL water sample was collected in the study site. Upon arrival at the 

laboratory, the samples were filtered using a Whatman no. 42 filter paper. The filter was 

removed and subsequently folded once with the algae inside, blotted in absorbent paper, 

and kept in a clean and properly labelled container. The filters with the algae were cut into 

small pieces and macerated in 8 mL of 90% acetone in subdued light. The extract was 

placed in a 10 mL capacity centrifuge tube. 2 mL of 90% acetone were added to the tube 

to obtain an extract volume of 10 mL The extract was centrifuged for 10 min at 500xg 

(Kubota KS-5000P). The sample extract was pipetted, carefully transferred to the cuvettes, 

and placed in the UV-VIS Dual Beam and Auto Cell UVS 2700 spectrophotometer 

(Labomed, Inc., California, USA). The absorbance of the extract was measured at 750, 

664, 647, and 630 nm against 90% acetone (blank). The chlorophyll-a concentration was 

calculated using the equation given by Jeffrey & Humphrey (1975): 
  

Chl a = [(11.85 * (E664–E750)–1.54 * (E647–E750)–0.08 * (E630–E750)) * Ve]/L * Vf 

 

Where: L is the cuvette light-path in cm, Ve is the extraction volume in mL, Vf is filtered 

volume in L. Concentrations were expressed in mg m-3.  

 Bacterial load was assessed using the modified procedures of Reyes et al (2019). 

Water samples were collected simultaneously with the collection of samples for ammonia, 

phosphate and chlorophyll-a analysis. The samples were stored in 100 mL capacity PE 

containers and transported to the laboratory at low temperature. A series of serial dilutions 

(10-10) was made to prepare an aliquot for bacterial counting. 1 mL of water sample was 

added to the first test tube containing 9 mL of physiological saline solution (PSS). The 

solution was vigorously mixed and 1 mL was transferred to another test tube containing 

the same amount of PSS. The process was repeated in succeeding test tubes. From the 

tenth test tube, 0.1 mL aliquot was streaked in McConkey agar plates for the total bacterial 

count. The plates were incubated for 18-24 h and the number of coliform colonies was 

counted with the aid of a smartphone installable Microbial Colony Counter application 

(MLTool Technologies, New Delhi, India). The colony forming units (CFU) per unit of an 

aliquot streaked was estimated using the formula: 

  

Coliform count (CFU mL-1) = (number of colonies x dilution factor)/Volume plated                         

 

Collection and preservation of water samples. Water samples for plankton analysis 

were collected using a plankton net with a 45-micron mesh size. Collection of water was 

aided with a 5 L pail and filtered using the plankton net. This process was repeated 5 times 

until a 50 mL sample was obtained. The filtered water was stored in PE containers and was 

fixed by adding 0.15 mL of Lugol’s iodine solution for phytoplankton samples (APHA 1998) 

and 4% commercial formalin for zooplankton samples (Pollupuu 2007). The samples were 

transported to the laboratory at low temperatures. Upon arrival, the samples were placed 

in a dark room to allow the settlement of plankton. 
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Plankton identification and counting. A drop (1 mL) of stored sample was transferred 

to a Sedgewick Rafter Counting Chamber for identification and counting. The sample-filled 

chamber was observed under a binocular microscope (40x) (Hund Wetzlar). Plankton 

(phytoplankton and zooplankton) was identified using the taxonomic keys of: Reynolds 

(1984), Witty (2004), van Vuuren et al (2006), Petersen et al (2020) and Dang et al 

(2015). The representative from each identified group/genus were counted. The recorded 

number of individuals per unit of sample was used for the calculation of density. The 

method of Limates et al (2016) was adopted for the computation of average cell density. 

Thirty random grid squares of the Sedgewick-Rafter were evaluated. A raising factor (RF) 

was first obtained by dividing the total number of grids in the Sedgewick-Rafter (50 grids) 

by the number of grids analyzed (30 grids) and multiplied by 20. This raising factor was 

used to determine the density in the exact volume of sample. Computation of density was 

based on the group of major taxa and the percentage of each representative taxa was 

calculated. The formula to obtain average density (AD) and relative density (RD) are as 

follows: 

 

AD = RF x average count/total volume filtered 
 

RD = Total # of cells per group/Total # of cells for all group x 100% 

 

Assessment of primary productivity. The primary productivity of Langiran Lake was 

assessed using the light (clear) and dark (blackened) container technique. The initial level 

of oxygen was measured using a handheld multi-parameter water quality equipment (prior 

to the collection of 500 mL water for incubation). Then light and dark containers with a 

capacity of 500 mL were submerged at a depth of 30 cm from the surface to collect water 

for incubation. The containers were tightly closed after being filled with water while still 

submerged to ensure that there was no bubble formation. Collection was conducted in 

designated sampling stations with triplicates. Then water from the light and dark containers 

was immediately incubated for 24 h using the on-deck incubation method (Balch et al 

2022). The phytoplankton primary productivity was expressed as the quantity of carbon 

assimilated per time unit. Thus, the changes in oxygen concentration were converted as 

corresponding changes in carbon. The photosynthetic quotient and respiratory quotient 

from Strickland & Parsons (1960), which are ratios describing the relative amounts of 

oxygen and carbon involved in photosynthesis and respiration were integrated to the 

equation of Britton & Greeson (1987). The calculations for gross primary productivity 

(GPP), net primary productivity (NPP) and respiration (R) were made using the following 

formulas: 

 

GPP (mg C m-3 h-1) = [(LB–DB) * 1000 * 0.375] / (PQ*∆T) 

 

NPP (mg C m-3 h-1) = [(LB–IB) * 1000 * 0.375] / (PQ*∆T) 

 

R (mg C m-3 h-1) = [(IB–DB) * 1000 * 0.375] / (RQ*∆T) 

 

Where LB, IB, DB refer to the concentrations of DO in the “Light” container, “Initial” 

container and “Dark” container, respectively. ∆T, PQ and RQ refer to the time of incubation, 

photosynthetic quotient and respiratory quotient, respectively. Strickland & Parsons (1960) 

suggested a PQ value of 1.2 (PQ=molecules of oxygen liberated during 

photosynthesis/molecules of CO2 assimilated) and a RQ value of 1 (RQ=molecules of CO2 

liberated during respiration/molecules of oxygen consumed). The constant value 0f 0.375 

converts mass of oxygen to mass of carbon and is a ratio of moles of carbon to moles of 

oxygen (12 mg C / 32 mg O2). The value 1000 converts liters (L) to cubic meters (m3). 

 

Determining trophic status. The trophic status of the lake was determined using the 

conventional trophic state index (TSI) criteria based on chlorophyll-a (CHL-a), total 

phosphate concentration (TP) and Secchi disc visibility (SDV). The formulas are: 
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TSI (CHL-a, µg L−1) = 10 × [6 – (2.04 – 0.68 ln(CHL-a))/ln2] 

 

TSI (TP, µg L−1) = 10 × [6 – ln(48/TP)/ln2] 

 

TSI (SD, m) = 10 × [6 – ln(SD)/ln2] 

 

The values obtained from the computation of TSI (CHLa), TSI (TP) and TSI (SD) were used 

to determine the average TSI using the Carlson (1977) equation: 

 

ATSI = [TSI (CHLa) + TSI (TP) + TSI (SD)]/3 

 

Based on the computed ATSI, the lake could be classified based on trophic level. In previous 

studies, the TSI for oligotrophic conditions was in the range of 30-40, mesotrophic 

conditions have a TSI range of 40-50, and eutrophic conditions range between 50-70 

(Mamun et al 2021).  

 

Data treatment and analysis. The data collected during the assessment was processed 

using descriptive statistics and tabulated for better presentation of results. The degree of 

association between water quality parameters (depth, turbidity, transparency, 

temperature, DO, pH, salinity, conductivity, ammonia, nitrite, phosphate, chlorophyll-a and 

coliform count) and the density of plankton in Langiran Lake was ascertained using the 

Pearson Product Moment Correlation. 

 

Results and Discussion 

 

Water quality variables. The summary of result on the assessment of water quality is 

presented in Table 2.  

 

Table 2 

Summary of the level of water quality variables in Langiran Lake 

 

Parameter 
Sampling site 

Mean 
Station 1 Station 2 Station 3 Station 4 

Water depth (m) 1.90 1.40 2.40 2.00 1.92 
SDV (m) 1.30 0.50 1.20 1.30 1.07 

Turbidity (NTU) 821.0 807.0 634.3 631.3 723.4 
Temperature (ᵒC) 30.8 30.8 31.1 31.1 30.9 
Dissolved oxygen 

(mg L-1) 
2.6 2.5 2.6 2.1 2.4 

pH 8.5 8.4 8.4 8.1 8.4 
Salinity (ppt) 0.2 0.2 0.1 0.1 0.15 
TAN (mg L-1) 0.052 0.055 0.026 0.020 0.038 

Nitrite (mg L-1) 0.008 0.009 0.009 0.011 0.009 
Total Phosphate 

(mg L-1) 
0.036 0.090 0.053 0.191 0.093 

Chlorophyll-a (mg 
m-3) 

2.727 2.563 1.647 1.517 2.113 

Total Coliform 
(CFU/mL), 

(MPN/100 mL) 

2.90x1012, 
>1800 

1.27x1012, 
>1800 

0.67x1012, 
980 

1.27x1012, 
>1800 

1.52x1012, 
>1500 

Note: SDV - Secchi disc visibility; TAN - total ammonia nitrogen; CFU - colony forming units; MPN - most probable 
number. 

 

Assessing water quality is an integral component of any development activity in natural 

bodies of water. In aquaculture, the level of water quality sets the foundation for the 

establishment of aquaculture systems and in creating appropriate lake management 

programs. In comparison with the standards prescribed by DAO 2016-08 (DENR) as major 

guidelines implemented in the Philippines and several studies (detailed below), it can be 

said that the water quality of the lake in general is in relatively poor condition.  
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 The mean water depth of the lake was recorded at 1.92 m, with station 3 (open 

water area) having the deepest portion (2.4 m). SDV had a mean reading of 1.07 m and 

the turbidity recorded a mean of 723.4 NTU. Water transparency describes the 

transmission intensity of light in water, its quantity and nature of the matter and 

substances that play significant role in supporting the primary productivity (Robert B. Annis 

Water Resources Institute 2020). Transparency has an important implication for aquatic 

diversity. The transparency of freshwater bodies varies substantially, and has a range of 

1.3-5 m for some lake sites worldwide (Teubner et al 2020). Most shallow inland lakes 

were observed to have a narrow range below 1.5 m (Bai et al 2020). The mean water 

transparency observed in Langiran Lake is below this range, suggesting its conformation 

with the common transparencies in shallow lakes. According to Jones & Bachmann (1978), 

it is closely associated with algal biomass. However, it is commonly measured as a function 

of chlorophyll-a concentration, total suspended solids, and colored dissolved organic matter 

(Bai et al 2020). Algae is often regarded as a main driving factor that influences the 

transparency of lake waters (Angagao et al 2017). The transparency of deep lakes is 

determined by phytoplankton biomass instead of sediment resuspension (Liu et al 2020). 

Meanwhile, a decrease in transparency could imply water quality deterioration. This 

condition could be a function of natural and anthropogenic factors through time. 

Eutrophication can strongly influence the lake ecosystem and the services that it can 

provide. Reductions in water transparency are due to the formation of turbid sediments 

and excessive growth of phytoplankton (Bunnel et al 2021). Turbidity is sometimes used 

interchangeably with water transparency. In this study, the turbidity of lake was expressed 

as a maximum concentration in nephelometric units (NTU) following the US EPA (2022). 

In comparison with the standard turbidity level in some parts of the United States for lake 

water (under 25 NTU), the observed mean turbidity in Langiran Lake is excessive. 

Moreover, it is outside the range of annual mean turbidity recorded in seven crater lakes 

in the Philippines (Zapanta et al 2008). However, there is no established criterion for 

turbidity in the country at present. From an aquaculture viewpoint, the level of turbidity is 

relatively high when converted to milligram per liter (241.13). The turbidity of water usually 

describes the amount of suspended particulate matter (SPM). These SPMs are playing 

important roles in the transport and transformation of organic pollutants (He et al 2021). 

High levels of particulate matter in natural and aquaculture waters may negatively affect 

the physiological state of fish populations and other members of the aquatic community.  

 The temperature of the lake surface water is 30.9oC. Water temperature is 

considered a controlling factor for all aquatic life (Devi et al 2017). It measures the intensity 

of heat in the system. Many biological, physical and chemical processes are affected by 

this variable. The recorded mean temperature is higher compared to the findings of several 

assessments conducted in different freshwater bodies in Luzon Island (Reyes et al 2019; 

Fajardo et al 2022). This condition could be linked to the area and depth of Langiran Lake, 

where smaller and shallow waters tend to warm rapidly than large and deep ones (Mooji 

et al 2008). However, the recorded level is within the recommended range of 25-31oC 

(DAO 2016).  

 In terms of DO, low values have been recorded across stations with a mean of 2.4 

mg L-1. DO is another variable that reflects water quality in lakes. This variable is virtually 

needed for the survival of aquatic organisms. It can be noted that the DO of Langiran Lake 

during the assessment is relatively low compared to the ideal level of DENR (DAO 2016), 

which is above 5 mg L-1. According to Angagao et al (2017), low concentrations of DO may 

indicate high oxygen consumption of lake-associated organisms. It is evident by the 

presence of dead fish during the assessment. The presence of a dense mat of water 

hyacinth could be a primary factor influencing low oxygen levels. Dense mats prevent 

transfer of atmospheric oxygen to the surface water and restrict light penetration, which 

is essential for photosynthesis (Villamagna & Murphy 2010). Shallow lakes can be heavily 

infested by the plant as observed in Langiran Lake, where complete deoxygenation may 

occur in its deeper water and sediments (Osumo 2001). The obtained results imply that 

the lake cannot sustain the oxygen demands of organisms within it and it is not suitable 

for aquaculture unless actions will be implemented to manage the DO level of the lake. 
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 The pH did not vary greatly across sampling sites, having a mean value of 8.4. The 

pH of a water body indicates the acidity or basicity of a water. Acidic water contains extra 

hydrogen ions (H+) and basic water contains extra hydroxyl (OH−) ions (Alley 2007). The 

mean pH value observed in Langiran Lake conforms to the standard pH range of 6.5-9, set 

by the DENR for freshwater Class C category. Moreover, the level of pH is within the 

favorable range of 7-8.5 for biological productivity (Bhatnagar & Devi 2013). Therefore, 

the lake is suitable for fish propagation, recreation and industrial uses in terms of pH.  

 Salinity had a mean value of 0.15 ppt. This parameter measures the concentration 

of dissolved salts in water. Most of these salts are comprised of chloride. According to 

Elbein (2017), the salinity of freshwater lakes is typically within the range of 0-0.1 ppt. 

The small deviation of salinity of the lake’s water from this range could be attributed to its 

proximity to residential and agricultural areas. Müller & Gächter (2011) linked the 

increasing chloride concentration in a lake from the agricultural and industrial inputs. 

Moreover, prolonged dry periods could elevate chloride concentrations (Webster et al 

2000).  

 Chemical parameters such as TAN, nitrite and phosphate have mean values of 0.038 

mg L-1, 0.009 mg L-1 and 0.093 mg L-1, respectively. TAN is a parameter that measures 

both the unionized and ionized ammonia. The TAN of lake water is relatively low compared 

with the reported level from other freshwater bodies such as Lake Lanao (Angagao et al 

2017), Nabao Lake (Reyes et al 2019) and Pantabangan Reservoir (Fajardo et al 2022). It 

is surprising that despite the heavy infestation with water hyacinth and low oxygen levels, 

the TAN level is still within the acceptable range. The mean nitrite concentration of the lake 

is also in conformity with the level set by PHILMINAQ (<0.5 mg L-1) for aquaculture. The 

low concentration of TAN and NO2 could be attributed to the monotypic mat of water 

hyacinth. Akinbile & Yusoff (2012) reported that the macrophytes can efficiently reduce 

nitrogen in waters with constant solar radiation, temperature and DO levels. However, 

decaying materials from this macrophyte could negatively affect water quality that may 

result in DO depletion (Sikawa & Yakupitiyage 2010).  

 The recorded mean phosphate level is beyond the permissible limit of 0.05 mg L-1 

set by DENR for Class C waters (DAO 2016). Phosphorous is regarded as a limiting factor 

for algal growth in most freshwater bodies. However, even a modest increase in its level 

could result in eutrophication (Bhateria & Jain 2016). Although there are several sources 

of phosphorous, the high concentration in Langiran Lake could be attributed to its closeness 

to rice paddies. Fertilization during land preparation increases the phosphorous level and 

transport of phosphorous from rice paddies can be generally associated with runoff events 

(Cui et al 2020; Guan et al 2022). 

 As to biological variables, chlorophyll-a has a mean of 2.113 mg m-3 and the mean 

coliform count is 1.52 x 1012 CFU mL-1, or >1500 MPN/100 mL. Chlorophyll-a concentration 

is an important parameter in evaluating water quality. It is the most common parameter 

to characterize trends in algal biomass (Huot et al 2007; Adams et al 2021). Moreover, it 

can be used as an indicator of nutrient loading and extent of pollution in a body of water 

(Cheng et al 2013). The recorded mean level of chlorophyll-a in this study is considerably 

lower than the reported levels in seven crater lakes in the Philippines namely: Bunot, 

Calibato, Mohicap, Palakpakin, Pandin, Samplaoc and Yambo (Zapanta et al 2008). In 

terms of chlorophyll-a concentration, the lake can be considered as oligotrophic when 

compared to a threshold of >40 mg m-3 as an indicator of algal bloom (Bachmann et al 

2003). Other authors also used higher and lower thresholds such as 100 µg L-1 (Tett 1987) 

and 5 µg L-1 (Jonsson et al 2009) to define a bloom. The level of water transparency and 

turbidity of the lake could be largely contributed by suspended sediments and not by the 

phytoplankton community. This could also be supported by the recorded level of oxygen 

suggesting the sparsity of primary producers. Lastly, the concentrations of coliforms 

suggest that the water of the lake is contaminated by this bacterium. However, the total 

coliform counts did not exceed the standard values specified by the Department of 

Environment and Natural Resources in the Philippines for Classes C waters (5000 MPN/100 

mL). Although mean values are still within the standard limit of total coliform, the presence 

in high numbers may suggests higher risk of contracting disease-causing organisms (Rana 

et al 2017). The obtained results may imply that the lake has a direct contact with several 
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risk factors such as animal manure and household effluents. Contaminated soil, wildlife 

feces, agricultural water, dust, and the household communities present and near the lake 

are considered as potential sources of heavy coliform contamination (Beuchat 2006; 

Matthews 2013). Anthropogenic activities and improper waste disposal can also lead to the 

spread of this bacterium in water (Paragamac et al 2021). Furthermore, storm event 

runoffs may hasten the transport of coliform-contaminated materials (Oporto-Bensig et al 

2014). Previous studies showed that coliforms can survive in the environment for up to 

four months depending on the type of manure, temperature, pH, oxygen level, ammonia, 

concentration and presence of competing organisms (Guan & Holley 2003; El Saidy et al 

2015).  

 

Plankton composition and abundance. Based on the results indicated in Table 3, a total 

of 14 genera belonging to 5 groups of phytoplankton were identified in Langiran Lake which 

include charophytes, chlorophytes, cyanophytes, bacillarophytes and euglenophytes. 

Among the identified phytoplanklton genera are Closterium, Ankistrodemus, Actinastrum, 

Monoraphidium, Pediastrum, Scenedesmus and Tetrahedron. In terms of zooplankton 

composition, it was found that 5 groups which include rotifers, cladocerans, copepods, 

heliozoans and ciliates are present in the lake, with 9 identified and 2 unidentified genera.  

 

Table 3 

Summary of the assessment of plankton composition Langiran Lake 

 

Plankton group Genus 
Sampling site 

Station 1 Station 2 Station 3 Station 4 

Phytoplankton      

Charophytes Closterium + + - - 

Chlorophytes Ankistrodesmus - - + - 

 Actinastrum - + - - 

 Monoraphidium - - + + 

 Pediastrum + + + + 

 Scenedesmus + - - - 

 Tetraedron + + - - 

Cyanophytes Anabaena + - - + 

 Merismopedia + - - - 

Bacillarophytes Navicula - + - - 

 Nitzschia + + + + 

 Synedra + + + + 

Euglenophytes Euglena + + + + 

 Phacus + + + - 

Zooplankton      

Rotifers Brachionus + + + + 

 Trichocera + + - - 

 Keratella + + + - 

 Hexartha - - + + 

Cladocerans Diaphanosoma + + + + 

Copepods Eucyclops - - + + 

 Mesocyclops + + + + 

 Tropocyclops - - + - 

 Filinodaptomus + + + + 

Heliozoans Unidentified - - - + 

Ciliates Unidentified - - - + 

 

As revealed, chlorophytes dominated the phytoplankton community of the lake with 6 

identified genera, while rotifers and copepods both have 4 representative genera 

dominating the zooplankton community. These are Brachionus, Trichocera Keratella, 

Hexartha, Diaphanosoma, Eucylcops, Mesoscyclops, Tropocyclops, and unidentified genera 

of both heliozoan and ciliate. In comparison with previous studies conducted in lake 
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systems of different areas of the Philippines, the structure of the plankton community may 

vary significantly due to a number of biotic and abiotic factors. However, the richness of 

chlorophytes among algal groups is similar with the findings of studies conducted in Nabao 

Lake (Reyes et al 2019) and Lake Tikub (Torreta et al 2020). Meanwhile, the richness of 

rotifers and copepods was also reported in Paoay Lake, Ilocos Norte (Aquino et al 2008). 

 In terms of abundance, microscopic assessment revealed that the phytoplankton 

community had a mean density of 8.28 ind L-1, while the zooplankton had a mean density 

of 10.40 ind L-1 (Table 4).  

 

Table 4 

Summary of the assessment of plankton density in Langiran Lake 

 

Plankton group 
Plankton density in the sampling site 

Mean 
Station 1 Station 2 Station 3 Station 4 

Phytoplankton (ind L-1) 12.32 8.32 6.88 5.6 8.28 

Charophytes (%) 2.31 2.56 0.00 0.00 1.22 

Chlorophytes (%) 6.13 4.71 6.55 6.67 6.02 

Cyanophytes (%) 6.06 0.00 0.00 4.76 2.71 

Baciliariophytes (%) 79.22 85.03 82.55 83.16 82.49 

Euglenophytes (%) 5.48 7.69 10.90 5.41 7.37 

 

Zooplankton (ind L-1) 

 

17.76 

 

14.08 

 

3.04 

 

6.72 

 

10.40 

Rotifers (%) 31.46 27.25 27.50 35.71 30.48 

Cladocerans (%) 17.47 12.24 4.17 8.99 10.72 

Copepods (%) 51.07 60.50 68.33 49.34 57.31 

Heliozoans (%) 0.00 0.00 0.00 3.17 0.79 

Ciliates (%) 0.00 0.00 0.00 2.78 0.69 

 

As observed, there is low density of phytoplankton in the area that can be attributed to the 

limitations brought about by the infestation of water hyacinth. Moreover, the grazing 

pressure of zooplankton could have reduced their biomass. Bacillariophytes, also known as 

diatoms, showed the highest relative density (82.49%) in the community. Diatoms can 

thrive in almost all types of surface waters, but the composition of the community may 

depend on various environmental factors (Martin & Fernandez 2012). In the study of 

Effendi et al (2016), diatoms are considered the most abundant algae because of their 

ability to adapt in a wide range of environmental condition. Similar findings have been 

reported by Fajardo et al (2022) in Pantabangan Reservoir in Nueva Ecija, Philippines. The 

abundance of diatoms in a body of water implies a certain level of pollution gradients in 

water. According to Akinyemi et al (2007), a 40% relative abundance or occurrence of 

diatoms in a phytoplankton community may be a good indicator of pollution, as these algae 

can tolerate polluted waters. With regard to zooplankton abundance, the copepods exhibit 

some sort of dominance as they outnumbered other identified members of the community. 

These organisms comprised 57.31% of the zooplankton community of Langiran Lake. 

Fajardo et al (2022) stated that copepods are generally abundant in freshwater 

ecosystems, but require longer periods to establish their population compared to other 

groups of zooplankton. The dominance of copepods indicates that there is low level of fish 

predation in Langiran Lake that could substantially decrease their population. The large 

size of copepods and cladocerans made them more vulnerable to predation compared with 

rotifers that are considerably smaller (Karus et al 2014). Moreover, despite low 

phytoplankton density, copepods still dominate the community, which can be linked to the 

selective consumption of these organisms to plant detritus (Harfmann et al 2019). Detritus 

materials produced by water hyacinth in Langiran Lake may have been used by these 

organisms to survive and proliferate. Rotifers are the second most abundant group, 

comprising 30.48% of the overall zooplankton density. According to Ceirans (2007), 

rotifers are better biological indicators than crustaceans (copepods and cladocerans), as 

they are sensitive to environmental changes. High abundance indicates that the lake is 

eutrophic (Ismael & Adnan 2016). Emam (2006) described that a shift in the zooplankton 
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community structure from larger species to smaller ones is a direct effect of eutrophication. 

This condition could be attributed to several factors such as domestic discharges, animal 

wastes and fertilizers leaching to a water body (Fajardo et al 2022).  

 

Relationships between water quality variables and plankton abundance. The 

correlation analysis of environmental parameters such as depth, water transparency or 

SDV, turbidity, temperature, pH, DO, salinity, TAN, NO3, PO4, chlorophyll-a, and total 

coliform with the plankton density in the Langiran Lake showed the following findings: 

ciliates from the zooplankton taxa are negatively correlated with pH and DO, while they 

are positively correlated with phosphate level; the salinity level was positively correlated 

with charophytes, rotifers, cladocerans, and copepods; depth was negatively correlated 

with copepods; TAN showed a moderately positive correlation with bacillarophytes and 

copepods; a positive correlation was also observed between phosphate level and ciliates; 

surprisingly, chlorophyll-a had a positive correlation with bacillarophytes; coliform count 

had a significantly high correlation with rotifers (Table 5). 

 Ciliates comprise the majority of living organisms in the aquatic environment next 

to bacteria (Shukla & Gupta 2001). Some studies had shown correlation of the pH with the 

growth, cell density, species composition, and species richness of ciliates (Noland 1925; 

Lackey 1938; Weisse & Stadler 2006). Extensive changes in pH in the natural environment 

may make ciliates die out or perhaps encyst if they are not be able to tolerate such 

conditions (Lackey 1938). In the present study, the mean pH level recorded in the lake 

was 8.4, which is slightly alkaline. As compared to the study of Noland (1925), the observed 

minimum and maximum levels of pH were 6 and 9.8, concluding that pH has no direct 

influence on ciliate distribution. Meanwhile, the laboratory experiment of Weisse & Stadler 

(2006) indicated that pH has a minor ecological significance for freshwater ciliates. 

Freshwater ciliates showed positive growth rates for pH values ranging from 6.5 to 8, but 

Urotricha farcta, the model ciliate species used to quantify the potential significance of 

seasonal pH changes had showed reduction in growth rates with increasing pH, from 7.4 

to 8.4. Therefore, in this study, it could be assumed that the density of ciliates in the lake 

may be affected by other factors rather than pH.  

 The DO concentration in the aquatic environment is mainly influenced by four 

factors: temperature, the abundance of chlorophyll-bearing organisms, the number of 

oxygen-consuming organisms, and the amount of aeration in the water, which is influenced 

by wave actions, currents, and the ratio of depth to surface exposed (Noland 1925). In the 

present study, the recorded mean DO level was low, having 2.4 mg L-1. The significant high 

negative correlation of ciliates to DO may not be conclusive. Based on Noland (1925), DO 

is a necessity for the life of ciliates, even if some ciliated thrive in most concentrated 

infusions, where oxygen is almost or totally depleted. These organisms rise in the surface 

water, where they can access a very small amount of available free oxygen. DO is 

important for the growth and survival of zooplankton, as its concentration affects the rate 

of metabolic reactions of organisms (Badjoeri 2020). 

 The positive significant correlation of salinity to zooplankton taxa such as rotifers, 

cladocerans, and copepods is in accordance to their euryhaline characteristics that permit 

them to live in both freshwater and saline environments (Zsuga et al 2021).  

 The inverse relationship of depth to copepod groups in the present study was also 

observed in the study of Yamaguchi et al (2015). Thermocline and the oxygen minimum 

zone are environmental factors that influence the vertical distribution of zooplankton 

(Sameoto 1986). The zone below the thermocline is characterized by a lack of oxygen 

(Karpowicz & Ejsmont-Karabin 2018). Hence, zooplankton may tend to move upward to 

access available oxygen necessary for their metabolic processes. Furthermore, increasing 

density of zooplankton with decreasing depth may be also affected by the presence of 

phytoplankton in the water column (Khalifa et al 2015), which serve as their food. 

Phytoplankton, like other land plants, needs photon light energy along with inorganic 

carbon for photosynthesis (Utami et al 2021), tending to stay in the upper layers of the 

water where the sunlight penetrates.
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Table 5 

Correlation coefficient of environmental variables and plankton density in Langiran Lake, Bayambang, Pangasinan 

 

 Charophytes Chlorophytes Cyanophytes Bacillarophytes Euglenophytes Rotifers Cladocerans Copepods Heliozoans Ciliates 

Depth -0.311 -0.028 0.005 -0.187 -0.146 -0.474 -0.408 -0.685* 0.063 0.063 
SDV -0.072 0.054 0.330 -0.054 0.043 -0.088 -0.080 -0.396 0.203 0.203 
Turb 0.426 0.195 0.174 0.076 0.009 0.571 0.478 0.832 -0.285 -0.170 

Temp -0.327 -0.198 0.004 -0.498 -0.341 -0.124 -0.504 -0.388 0.392 0.129 
pH 0.288 0.267 0.216 0.298 0.075 0.382 0.548 0.535 -0.233 -0.594* 
DO 0.227 -0.007 0.305 0.208 0.155 0.424 0.233 0.228 0.274 -0.771** 
Sal 0.577* 0.241 0.211 0.424 0.321 0.620* 0.703* 0.879** -0.302 -0.302 

TAN 0.571 0.430 0.004 0.598* 0.523 0.189 0.445 0.596* -0.479 -0.054 
NO2 -0.176 -0.081 0.557 -0.410 -0.411 0.152 0.292 0.097 0.566 -0.131 
TPO4 -0.317 0.118 -0.015 -0.049 -0.253 -0.253 -0.372 -0.260 0.384 0.702* 
Chl-a 0.100 0.242 0.055 0.594* -0.092 0.458 0.536 0.590 -0.388 -0.145 
TC -0.047 -0.148 0.029 0.016 -0.188 0.776** 0.196 0.367 0.093 -0.005 

Note: SDV - Secchi disk visibility; Turb - turbidity; Temp - temperature; DO - dissolved oxygen; Sal - salinity; TAN - total ammonia nitrogen; TPO4 - total phosphate; Chl-a - 
chlorophyll-a concentration; * - significant at p<0.05; ** - significant at p<0.01. 
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The direct relationship of TAN with bacillarophytes may probably be linked to the 

adaptability of this phytoplankton genus to a wide range of environmental variables 

(Effendi et al 2016). Shen et al (2018) found that NH3-N is one of the main environmental 

factors that affect the distribution of benthic diatoms. Also, the genera Nitzschia and 

Navicula were found in the Langiran Lake, where these diatoms were considered eutrophic 

indicators of the aquatic environment. This is in accordance with the findings of the present 

study, where the lake was classified as eutrophic based on the calculated mean trophic 

status index (TSI).  

 Diatoms are utilized in monitoring water quality in waterways as they are powerful 

bioindicators of freshwater quality (Shen et al 2018). The copepods’ linear relationship with 

TAN may associate with the active excretion of nitrogen in the form of ammonium into the 

water (Valdes et al 2017). Valdes et al (2017) revealed that copepods excrete nitrogen at 

an excretion rate reaching 2.6 µmol L-1 h-1. 

 The strong relationship of PO3 with ciliates is because phosphorous is among the 

major drivers influencing ciliate biomass, indicating a potential impact of eutrophication in 

the animal’s growth. In particular, nutrients in the water directly affect the photosynthetic 

activity of photosynthetic ciliates, whilst indirect impact is experienced in heterotrophic 

ciliates due to the effect on the growth of phytoplankton which serve as their food (Wang 

et al 2014). 

 Diatoms are the most species-rich autotrophic algae found in fresh, brackish, and 

marine waters (Mann et al 2017). This group also has chlorophyll-a as a light-harvesting 

pigment (Kucynska et al 2015). In ecology, chlorophyll-a concentration is used to quantify 

the abundance of algae proliferating in certain bodies of water (US EPA 2022). As such, 

the high abundance of diatoms clearly reflects on its significant positive relationship with 

the chlorophyll-a concentration in the lake. 

 The high degree of association on the total coliform bacteria and rotifers may be 

linked to the taxon’s feeding habit. Based on the study of Somani et al (2012), this group 

generally feeds on particulate organic matter and bacteria. The high level of coliform count 

recorded in the lake may be attributed to animal manure, household effluents, wildlife 

feces, and agricultural wastes that discharge in the lake, tending to increase the abundance 

of rotifers. 

 

Primary productivity. As shown in Table 6, the GPP of the lake has a computed mean of 

15.58 mg C m-3 hr-1, NPP of 8.55 mg C m-3 hr-1 and a respiration rate of 8.44 mg C m-3    

hr-1.  

 

Table 6 

Summary of the level of phytoplankton primary productivity in Langiran Lake 

 

Parameter Sampling site Mean 

 Station 1 Station 2 Station 3 Station 4  

GPP (mg C m-3 h-1) 12.59 25.95 12.76 11.02 15.58 

NPP (mg C m-3 h-1) 7.47 12.72 7.68 6.34 8.55 

R (mg C m-3 h-1) 6.15 15.89 6.09 5.63 8.44 

Note: GPP - gross primary productivity; NPP - net primary productivity; R - respiration. 

 

The GPP and NPP obtained in this study are considerably low, corresponding to low levels 

of chlorophyll-a. It has been reported that shallow lakes are substantially productive 

compared with deeper ones, but could deviate from this when there is a dense mat of 

macrophytes on the surface (Feresin et al 2010). This could explain the low level of primary 

productivity in Langiran Lake, as it is heavily infested by water hyacinth. This macrophyte 

covers a large portion of the lake resulting in the reduction of light intensity and 

temperature, thereby restricting photosynthetic activity. Higher rates of GPP, NPP and R 

were observed in the sampling site near rice paddies (Station 2). The leaching or transport 

of nitrogen and phosphorous from these areas may have increased the primary productivity 

of the sampling site. However, the mean NPP of the lake is generally low. Moreover, mean 

R rate is almost the same with the NPP suggesting high consumption of DO by associated 
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organisms. The level of net primary productivity of Langiran Lake is considerably lower 

compared with the reports on some freshwater bodies worldwide (Huq et al 1981; Feresin 

et al 2010; Koli & Ranga 2011; Lohani et al 2020). Hence, this could not favor aquaculture.  

 

Relationship between water quality variables and primary productivity. The 

correlation analysis between water quality variables and primary productivity of Langiran 

Lake suggest that depth and SDV were negatively correlated with GPP and R, while TAN 

was positively correlated with NPP (Table 7).  

 

Table 7 

Correlation analysis of water quality variables and primary productivity in Langiran Lake 

 

 GPP NPP R 

Depth -0.68* -0.407 -0.715** 

SDV -0.824** -0.514 -0.842** 

Turbidity 0.254 -0.089 0.536 

Temperature -0.426 -0.514 -0.159 

pH 0.282 0.2 0.261 

Dissolved oxygen 0.209 0.137 0.206 

Salinity 0.507 0.326 0.507 

TAN 0.538 0.613* 0.242 

Nitrite -0.061 -0.228 0.15 

TPO4 -0.1 0.087 -0.269 

TC -0.181 -0.282 0.003 

Note: SDV - Secchi disc visibility; TAN - total ammonia nitrogen; TPO4 - total phosphate; 

TC - total coliform; GPP - gross primary productivity; NPP - net primary productivity; R - 

respiration; * - significant at p<0.05; ** - significant at p<0.01. 

 

Negative associations of depth and SDV with GPP relate to the penetration of light into the 

water. Light along with nutrients are necessary for phytoplankton to proceed in their 

photosynthetic activity. According to Van Ruth et al (2020), phytoplankton production is 

influenced by depth layers in the ocean. The first is the layer with active turbulence caused 

by wind and tidal actions. In this region, the deeper the phytoplankton are mixed, the 

farther they will be taken away from the light. The second layer is the depth of the euphotic 

zone, where the sunlight could penetrate, thereby allowing the phytoplankton to 

photosynthesize. Lastly, in the third layer or the depth of maximum chlorophyll 

concentration, phytoplankton generally receives a lesser amount of light, which results in 

slower growth.  

 In terms of negative correlation of depth with respiration, the rate of respiration is 

typically high in the surface layers and decreases sharply below the base of the photic layer 

and often remains low throughout the thermocline (Del Giorgio & Duarte 2002). Respiration 

rates in lakes decline with increasing depths, being also associated to the decline in 

temperature and primary productivity (Pace & Praire 2004). 

 The positive relationship of TAN with NPP is associated with the phytoplankton 

growth due to the availability of nutrients in the surrounding water. Ammonia is a form of 

nitrogen that promotes eutrophication in the water (USGS 2016). The source of ammonia 

in the study site may come from the livestock wastes, effluents from households and 

hatchery facilities, wildlife feces, and agricultural wastes. 

 Temperature, turbidity, pH, DO, salinity, TAN, NO3, TPO4, and TC showed no 

significant relationships with primary productivity. This result is similar with the findings of 

Omondi et al (2016) in Kuinet Dam, Nigeria, where the insignificant relationship of 

temperature, pH, DO and TP has been linked to the effect of the dry period.  

 

Trophic status. The trophic status of a lake system is an essential parameter in 

determining its environmental condition (El-Serehy et al 2018) and basically used as 

reference for dividing lakes into different categories such as oligotrophic, mesotrophic, 

eutrophic, and hypereutrophic lakes (Carlson 1977). In its conventional approach, it is 
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calculated using a combination of water quality variables like water transparency, 

phosphorous level and chlorophyll-a concentration (Phillips et al 2013). The computed 

values of TSI are presented in Table 8. The lake has a mean TSI CHL-a of 38.96 µgL−1, 

classifying the lake as oligotrophic. This means that the lake has low to moderate 

productivity. Meanwhile, in terms of TSI TP and TSI SDV, the lake exhibits high values, 

falling within eutrophic classification. The computed mean TSI suggests that the lake is 

already in a eutrophic condition. With reference to the findings of Omondi et al (2016), a 

water body having total phosphates greater than total nitrogen, with the dominance of 

chlorophytes and baciliariophytes, could indicate a eutrophic condition. As observed, the 

lake is shallow, with phosphate levels beyond the acceptable range and dominated by green 

algae and diatoms. 

 

Table 8 

Mean values of trophic state indices in Langiran Lake 

 

Parameter 
Sampling site 

Mean 
Trophic 

class Station 1 Station 2 Station 3 Station 4 

TSI CHL-a 

(µgL−1) 
30.48 32.30 45.32 47.74 38.96 Oligotrophic 

TSI TP (µgL−1) 55.98 69.12 61.34 79.90 66.59 Eutrophic 

TSI SDV (m) 56.21 70.00 57.37 56.21 59.95 Eutrophic 

ATSI 47.56 57.14 54.68 61.29 55.16 Eutrophic 
Note: TSI CHL-a - trophic index chlorophyll-a; TSI TP - trophic index total phosphate; TSI SDV - trophic index 
Secchi disc visibility; ATSI - average trophic index. 

 

Conclusions. Based on the findings of the study, the water quality of the lake is generally 

poor and only few genera of phytoplankton and zooplankton are present. The richness and 

abundance of green algae and diatoms indicate the presence of organic pollutants. 

Moreover, primary productivity is low and the lake can be categorized as a eutrophic body 

of water. Therefore, aquaculture in the lake is not recommended as of date and appropriate 

management actions are necessary to enhance the productivity of the lake, such as total 

removal of water hyacinths, dredging, construction of residential sewage system, 

regulating excessive fertilizer application in nearby farms, regular water quality monitoring, 

and proper information dissemination among resource users. 
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