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Abstract. The aim of the study was to assess the distribution of pesticides and heavy metals contents in 
edible seaweeds species in El Jadida region coastal zone, and to evaluate the threshold limit values of 
seaweeds intake without risks to human health. Eleven seaweed species (Laminaria ochroleuca, 
Sargassum vulgare, Fucus spiralis, Ulva lactuca, Gelidium spinosum, Gelidium corneum, Gelidium 
pulchellum, Chondracanthus acicularis, Gracilaria sp., Gracilaria multipartita, and Hypnea musciformis) 
were collected seasonally from the coast of the studied area from spring 2022 to winter 2023, and were 
analyzed for pesticides 175 organochlorine, 42 organophosphorus, and 21 organohalogens, and for 
heavy metals (HVMs) contents (As, Pb, Cd, and Cr). Pesticides were determined using LC-MS-MS 
method, and heavy metals contents (As, Pb, Cd, and Cr) were analyzed by ICP-MES method. The 
contents of all pesticides were under the limit of quantification (LQ ≤ 0.010 µg g-1 dry weight (DW)) of 
seaweeds, so under the limit of toxicity risk. HVMs contents in the seaweed samples from the studied 
zone were found to follow a bioaccumulation pattern: As > Cd > Pb >Cr. Except for the autumn sample 
of the Rhodophyceae species C. acicularis, which showed very high contents for all the four HVMs, the 
rest of species mean contents ranged from 2.45 to 10.28 µg g-1 DW, 0.09 to 5.34 µg g-1 DW, 0.48 to 2.9 
µg g-1 DW, and 0.22 to 0.81 µg g-1 DW, respectively for As, Pb, Cd and Cr. Seasonal variation was highly 
significant for As, Pb and Cr (p < 0.005), and HVMs contents were high in the most period of the study, 
higher than the toxicity threshold limit values, mainly in the spring and autumn, and dropped down to 
very low level in the winter. The highest amounts of As were recorded in the Phaeophyceae, Sargassum, 
and Laminaria in the spring, F. spiralis in the spring, summer and autumn, and C. acicularis in the 
autumn with values ranging from 11 to 27.7 µg g-1 DW. Pb contents were very high in the autumn and 
very low in the spring and winter. Except the very high Pb content which was detected in C. acicularis 
(24.79 µg g-1 DW, the contents ranged from 0.67 to 1.45 µg g-1 DW in the autumn. The highest Cd 
values were recorded in F. spiralis, U. lactuca and G. corneum (4.8 to 6.9 µg g-1 DW). The highest Cr 
values were in U. lactuca (2.08 µg g-1 DW) and G. corneum (1.59 µg g-1 DW).    
Key Words: bioaccumulation, edible seaweeds, El Jadida region coastal zone, heavy metals, human 
health, intake threshold limit, pesticides. 
 
 

Introduction. Seaweeds have been consumed as feed in Asia during centuries ago, and 
only occasionally in other parts of the world (Nisizawa et al 1987). Seaweeds are 
beneficial to humans and animal nutrition (Caliceti et al 2002). Numerous species are 
edible and have been utilized in both industry and agriculture (Gomez-Ordonez 2012; 
Jimenez-Escrig et al 2012; Khan et al 2015; Al-Homaidan et al 2021), and as 
pharmaceutical and cosmetic products, as well as in the food, feed and as food additives  
due to their distinguished chemical composition rich in bioactive compounds of high 
nutritional and dietetic value (Peñalver et al 2020; Skrzypczyk et al 2023). 
 



 
AACL Bioflux, 2023, Volume 16, Issue 6. 
http://www.bioflux.com.ro/aacl  3015

Seaweeds are a very important source of bioactive substances of high value such 
as protein, fatty acids and PUFA, polysaccharids, fibers, minerals, polyphenols (Chen et al 
2021). Thus, they are considered of high economic interest, and seaweed industry is 
inceasingly thriving, relying on the exploitation of wild resources and aquaculture. The 
production was 35.1 millions tonnes in 2020 (FAO 2020). Nevertheless, this industry 
faces the main challenges of the exposure of seaweed resources to contamination with a 
wide range of hazardous substances, especially pesticides and heavy metals (HVM) that 
occur in high levels in seawater as a harmful impact of anthropogenic activities on coastal 
marine environment (Miltra et al 2021). Seaweeds have a large capacity of 
bioaccumulation of these contaminants (Sanchez-Rodriguez et al 2001), which poses a 
big issue regarding human health risks within consumption.  

The use of pesticides has increased significantly in many countries in the world, 
because of their low cost and wide application in industry, agriculture, and sanitation. 
Their intensive use in agriculture specifically makes food consumption as a main route of 
human exposure to organochlorines pesticides (OCP) (Wells et al 2017; Kumar & Sharma 
2021). It also constitute the main route of marine wildlife contamination including 
seaweeds. The pesticide residue concentrations in edible seaweed species may pose 
serious human health risks (Rodrigues et al 2018).  
 OCP are ubiquitous in the environment and may continue to pose health threat to 
both wildlife and human (Guo et al 2007). Another threat is heavy metal pollution in 
aquatic systems, which has become a global environmental pollution problem (Lü et al 
2018). They are usually present at low concentration in aquatic ecosystem but deposits 
of anthropogenic origin have raised the HVM concentration, creating environmental 
problems in coastal zones, lakes and rivers (Kamala-Kannan et al 2007). Given the 
toxicity, persistence, and non-degradable nature of HVMs in the environment, HVM 
contamination represents one of the greatest ecological risks for marine ecosystems 
(Pekey 2006). Due to their ability of adaptation to a large range of environmental 
conditions, seaweeds are highly abundant in different ecosystems (Rajfur et al 2010) Due 
to their high capability of HVM bioaccumulation from water, even in low contentrations, 
seaweeds are amongst the most suitable organisms as bioindicators for studies of HVM 
contamination in aquatic ecosystems (Wallenstein et al 2009; Agarwal et al 2022). HVM 
concentrations in algae are strongly dependent on the environmental parameters of their 
habitat (salinity, temperature, pH, light, nutrient concentrations, oxygen, etc.) 
(Zbikowski et al 2006). However, the environmental characteristics of the water in which 
algae grow (salinity, turbidity, nutrient content and HVM contamination) largely 
determine the mineral content they can absorb (Riget et al 1997; Vasconcelos & Leal 
2001; Lozano et al 2003; Marinho-Soriano et al 2006; Riekie et al 2006). So they have a 
huge potential as a tool for environmental bioremediation, as bioindicators and for 
pollution bioremediation by monitoring HVM pollution on many coasts and for wastewater 
treatment in controlled environments (Agarwal et al 2022). The capacity of algae to 
accumulate contaminants as metals depends on a variety of factors, the two most 
relevant ones are being the bioavailability of metals in the surrounding water and the 
uptake capacity of the algae (Sanchez-Rodriguez et al 2001).  

Seaweeds are known to be organisms of great importance. But, their ability to 
bioaccumulate HVM, and a wide kind of toxic chemicals make them of a high risk for 
human consumption (Løvdal & Skipnes 2022). Nevertheless, seaweeds could be 
consumed carefully in a way that their supply in HVM could be kept less than the 
permissible intake rate of different heavy metals These limits of intake are: Cd ≤ 0.35 
µg/kg bw/day, Pb ≤ 0.5 µg/kg bw/day, and As ≤ 0.3 to 8 µg/kg bw/day (EFSA 2009). 
The permissible consumption rate (PCR) of Cr was estimated in 1986 to be equal or less 
than 0.3 to 8 µg/kg bw/day (US EPA 1980). A seaweed daily consumption rate of 5 to 10 
g DW per person (Bw of 85 kg) could be safe and sufficient to supply the body needs in 
essential micronutrients, including Cr (Skrzypczyk et al 2023). 

In Morocco, El Jadida region coastline is a highly productive zone, where a very 
important upwelling occurs along the coastline making it one of the most important 
wildstock of seaweeds, especially agarophytes, and Phaeophyceae, and many edible 
species that could be exploided by the locals as a source of food and revenues. The 
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present study investigates the state of contamination of some edible seaweeds with 
pesticides and some most toxic heavy metals (HVMs) as arsenic (As), lead (Pb), cadmium 
(Cd) and chromium (Cr), and the potential of their use in human consumption with 
minimum risk for human health hazard.  
 
Material and Method 

 
Description of the study site. The coastline of Sidi Bouzid (coordinates 33°12'30”- 
33°14'30” N latitude and 8°32'50.58" W longitude) is part of El Jadida maritime 
circumscription that extends on 150 km. It is located 5 km far from the city of El Jadida 
and 11.3 km far from the commune of Moulay Abdellah (Figure 1). This coastal region is 
highly subject of the influence of a coastal upwelling that makes this zone highly rich in 
nutrients and highly productive. The choice of the site was justified by the high 
productivity and diversity of edible seaweeds, the high frequency of visits by seaweeds 
fishers, and ease of access to the seabed and harvesting.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map showing location of sampling site (Sidi Bouzid coast - El Jadida region). 
 
Targeted species sampling. Selected species from the study area were surveyed for 
their contents in pesticides, namely 175 organochlorine, 42 organophosphorus and 21 
organohalogens, and for some most toxic HVMs (As, Pb, Cd and Cr). Targeted species 
were selected relaying on the following criteria: edible species, and which were more 
abundant in the region. Seaweed samples belonging to the three main Phycophyta 
groups namely were: Phaeophycea (Fucus spiralis (Fu-spi), Laminaria ochroleuca (La-oc), 
Sargassum vulgare (Sa-vu)), Rhodophyceae (Gelidium spinulosum (Ge-spi), Gelidium 
corneum (Ge-co), Gelidium pulchellum (Ge-pu), Gracilaria sp. (Gr-sp.), Gracilaria 
multipartita (Gr-mu), Hypnea musciformis (Hy-mu), Chondracanthus acicularis (Ch-ac) 
and Chlorophycea (Ulva lactuca (Ul-la)). 

Samples of the 11 taxa of seaweeds were harvested each time during four visits 
of Sidi Bouzid seabed. Approximately 1 kg of wet biomass of each target species was 
harvested by hand from the intertidal zone and the higher part of the infralittoral zone 
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during spring tides, at low tide, from April 2022 to January 2023. In the case of 
Laminaria ochroleuca, due to conservation awareness, only very fresh drifted fronds were 
used as samples. 

The samplings dates were 13 April, 19 July, 21 September and 4 January which 
were matched with the four seasons of a year: spring, summer, autumn, and winter. 
Some species were not found regularly at every seabed visit, and were sampled one time 
namely, C. acicularis and G. multipartita or twice, namely, G. spinulosum and H. 
musciformis. The samples were washed in situ with seawater, stored in food plastic bags, 
and transported to the laboratory in an isotherm box at low temperature, where they 
were cleaned from epiphytes, and washed with deionized water to remove sand and salt. 
Then, they were stored in the freezer at very low temperature until treatment. 

 
Seaweeds samples pretreatment and analysis. Seaweed samples of the 11 target 
species harvested in 4 seasons were pretreated and analyzed for pesticides and HVMs 
contents. Seaweeds were analyzed for 175 organochlorines, 42 organophosphorus, 21 
organoalogens, arsenic (As), cadmium (Cd), lead (Pb) and chromium (Cr). All samples 
analyses were performed in triplicates and data quality was assessed. 
 
Seaweed samples pre-treatment. Seaweed samples were prepared as follows: 1 kg of 
wet biomass of each species was dried in an oven at a temperature of 50°C until constant 
weight and then was crashed using a food blinder, and homogenized in mortar. 
 
Pesticides residues analysis method. Extraction of pesticides from the seaweeds, 
using QuECHERS (NF EN 15662) extraction method was adopted. Pesticides were 
extracted with acetonitrile after the addition of magnesium sulphate, sodium chloride and 
buffer citrate salts. The organic phase was purified using a solid phase extraction (SPE) 
consisting of secondary primary amine (PSA) and magnesium sulfate and activated 
carbon in order to remove interfering substances and water residual.  

About 2 g of dried samples were weighed in triplicate, put in a flask, and mixed 
separately with 8 mL of distilled water and 10 mL of acetonitrile and vortexed for 1 min. 
Then the following salts were added: 4 g of magnesium sulfate, 1 g sodium chloride, 1 g 
trisodium citrate dehydrate and the disodium hydrogen citrate sesquihydrate, and the 
whole components were vortexed for 1 min and centrifuged at 3500 rpm for 5 min. The 
extracted aliquot was transferred to a centrifuge tube containing 25 mg of PSA and 150 
mg of magnesium sulphate and 15 mg of activated carbon. The purification was made 
using amino-adsorbent, a 6 mL of aliquot of acetonitrile phase obtained after the 
extraction in a tube containing 150 mg PSA, 900 mg of magnesium sulfate and 15 mL of 
activated carbon vortexed for 30 s and centrifuged at 3500 rpm for 5 min (LAB GTA 26). 
The analyses were performed with liquid chromatography tandem mass spectrometry 
LC-MS-MS (Agilent). 
 
Heavy metals analysis method. For each seaweed sample, a 1 g of dried biomass was 
weighed in triplicate, and was transferred into digestion flasks, and 2 mL of nitric acid 
was added to the sample. Then, digestion flasks were kept on a hotplate set to a 
temperature of 100°C for 2 h. The remaining digested solution was transferred to 30 mL 
flasks and diluted to a volume of 25 mL with distilled water. Then metal concentrations in 
the samples were measured using inductively coupled plasma-mass spectrometry ICP-
MS, of Ultima Expert brand, of the Independent Institution for Exports Control and 
Coordination MOROCCO FOODEX, Larache, Morocco. 
 
Calculation method of the permissible consumption limit of the seaweed species 
harvested from El Jadida region coastline. The human permissible consumption limit 
of the sampled seaweed species (SW-PCL) was established for each species sample, and 
calculation was based on their HVM contents (HVM-C) (expressed in µg/g DW of 
seaweed), and the Permissible Consumption Limit of different HVM (HVM-PCL) expressed 
in µg per kg of body weight (bw) per day. The HVM-PCL is: Cd ≤ 0.36 µg/kg bw/day, Pb 
≤ 0.5 µg/kg bw/day, and As ≤ 0.3-8 µg/kg bw/day (EFSA 2009). SW-PCL was not 
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calculated for Cr due to the absence of a reliable HVM-PCL value issued by any health 
care organization. The calculation equation is: SW-PCL = HVM-PCL x (HVM - C)-1.  

 
Statistical analysis. The data obtained were subject to statistical analysis using Excel 
and two-way analysis of variance (ANOVA), Pearson correlations in order to test different 
HVMs correlations under R studio version 3.6.2. To determine any significant differences 
in the HVM contents in the seaweeds related to species and seasons. Correlations 
between different metals were established. Two variables are considered highly 
dependent and the correlation is significant when “r” exceeds 0.50, and p value < 0.05.  
 
Results 

 
Pesticides contents in the seaweed species. As the first step, the present study 
determined pesticides residues (175 organochlorines, 42 organophosphorus, 21 
organoalogens) in seaweed samples: Phaeophycea (F. spiralis, L. ochroleuca, S. vulgare), 
Rhodophyceae (G. spinulosum, G. corneum, G. pulchellum, Gracilaria sp., G. multipartita, 
H. musciformis, C. acicularis) and Chlorophycea (U. lactuca). 

All seaweeds samples contents in organochlorines, organophosphorus, and 
organoalogens pesticides were under the limit of quantification (LQ = 0.010 µg g-1). All 
samples content complied with the European standards according to regulation EC 
396/2005 ANNEX II and IIIB without taking into account the uncertainty associated with 
the results. 
 
Heavy metals mean contents in the seaweeds during the study period. The 
results of the global mean contents and standard deviations (SD) of the HVMs As, Pb, Cd 
and Cr in the seaweed biomass (regardless to species and seasons) during the study 
period are displayed in Table 1. The seaweeds HVM contents showed the following 
pattern of distribution: As > Cd > Pb > Cr. The mean contents were: As (6.36±7.1 µg g-1 

dry weight (DW), Cd (1.67±1.8 µg g-1 DW), Pb (1.08±4.3 µg g-1 DW), and Cr (073±1.07 
µg g-1 DW). Standard deviations had high dispersion ranges, highlighting the important 
fluctuations of the species and seasonal contents during the study period. 
 

Table 1 
Summary of main statistics and two-way ANOVA HVM analyses results (95% confidence) 

 

 As Pb Cd Cr 
Mean 6.362 1.08338 1.66818 0.7307 
SD 7.09005 4.345266 1.848946 1.076946 
Max 28.143 24.79750 6.89000 5.9350 
Min 0.115 0 0.00975 0.0100 

 
The Pearson correlation coefficient between the seaweeds HVM contents (Table 2) 
showed that As was slightly correlated with both Pb and Cr (R = 0.5), while Pb was highly 
and positively correlated with Cr (R = 0.9). This means that the seaweeds As contents 
changed slightly in the same way as Pb and Cr, and Pb and Cr contents changes occurred 
in the same way; Cd contents were not correlated with any of the other HVM (R < 0.3), 
showing a great independence of distribution from the rest of HVM. 

 

Table 2 
The Pearson correlation coefficient between seaweeds heavy metals contents 

 
Metals As Pb Cd Cr 

As -- 0.5419251* 0.2229715 0.5222139* 
Pb  -- 0.0216797 0.8873163* 
Cd   -- 0.04169148 
Cr    -- 

Statistically significant correlations (r-value < -0.50 or > 0.50) are marked with asterisks (*). 
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The results of As, Pb, Cd and Cr mean contents distribution in 9 target seaweed 
species, their standard deviations, and patterns of distribution in species biomass during 
the study period are displayed in Figure 2. Species sampled one time (C. acicularis and 
G. multipartita are represented in Table 3. Except for C. acicularis sample, which showed 
very high contents for all the four HVMs (27.7, 24.8, 1.51 and 5.9 µg g-1 DW, 
respectively), the other species mean contents ranged from 2.45 to 10.28 µg g-1 DW, 
0.09 to 5.34 µg g-1 DW, 0.48 to 2.9 µg g-1 DW, and 0.22 to 0.81 µg g-1 DW, respectively 
for As, Pb, Cd and Cr. The results showed significant contents in HVM in most of the 
studied species biomass, and at varying levels and depending on the species and on the 
kind of metal. HVM standard deviations values were very high for all species, showing a 
high variation. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. HVM mean contents (in µg.g-1 DW) (mean±standard deviations (SD) and 
patterns of distribution among seaweeds species in El Jadida region coastal zone during 

the study period. 
 

Table 3 
Heavy metals contents in seaweed species found and sampled one time during the study 

period (in µg g-1 DW of seaweed) 
 

Species Season As  Pb  Cd   Cr   
Gracilaria multipartita Winter 2.45 0.09 1.33 0.70 

Chondracanthus acicularis Autum 27.68 24.80 15.08 5.94 

0

5

10

15

20

25

µg
 g

-1
D

W

AS 

0

2

4

6

8

10

12

14

µg
 g

-1
D

W

Pb 

0

1

2

3

4

5

6

µg
 g

-1
D

W

Cd 

0

0,5

1

1,5

2

µg
 g

-1
D

W

Cr 



 

 
AACL Bioflux, 2023, Volume 16, Issue 6. 
http://www.bioflux.com.ro/aacl 3020

Arsenic. Phaeophyceae species showed the highest mean contents in As, 10.3, 9.72, and 
6.62 µg g-1 DW, respectively for L. ochroleuca, F. spiralis and S. vulgare. Rhodophyceae 
mean contents were in the range of 2.45 to 6.12 µg g-1 DW, and the Chlorophyceae 
species U. lactuca mean content was 3.52 µg g-1 DW.  
 

Lead. Except for G. spinulosum, which showed a very high content in Pb (5.34 µg g-1 
DW), all the remaining species had mean contents less than 0.6 µg g-1 DW.  
 

Cadmium. Cadmium mean contents mostly ranged from 1.8 to 2.9 µg g-1 DW in U. 
lactuca, S. vulgare, G. corneum and F. spiralis, with the highest value recorded in Fucus 
spiralis, while they were more stable between 1.12 and 1.33 µg g-1 DW for the remaining 
species, with the lowest value noticed in L. ochroleuca.  
 

Chromium. Chromium mean contents ranged from 0.6 to 0.8 µg g-1 DW in Gelidium 
species, G. multipartita and U. lactuca and were less than 0.5 µg g-1 DW for Gracilaria 
sp., H. musciformis, L. ochroleuca and F. spiralis.   
 
As, Pb, Cd and Cr seaweed species mean contents distribution patterns during 
the study period. According to aforementioned results, the As, Pb, Cd and Cr contents 
in seaweed species mean contents distribution during the study period occurred 
according to following patterns, thus, highlighting the most bioaccumulative species for 
each of the target HVM: 
- for As: C. acicularis > L. ochroleuca > F. spiralis > S. vulgare > G. spinulosum > 
Gracilaria sp. > U. lactuca > G. corneum > H. musciformis > G. pulchelum > G. 
multipartita; 
- for Pb: C. acicularis > G. spinulosum > U. lactuca > G. corneum > G. pulchelum > S. 
vulgare > L. ochroleuca > Gracilaria sp. > H. musciformis > F. spiralis > G. multipartita; 
- for Cd: C. acicularis > F. spiralis > G. corneum > S. vulgare > U. lactuca > G. multipartita 
> G. spinulosum > Gracilaria sp. > H. musciformis > G. pulchelum > L. ochroleuca; 
- for Cr: C. acicularis > G. corneum > G. pulchelum > U. lactuca > G. spinulosum > G. 
multipartita > S. vulgare > Gracilaria sp. > H. musciformis > L. ochroleuca > F. spiralis. 
 
Seasonal changes in heavy metals contents in seaweed species. Results of HVM 
contents seasonal changes in seaweed species biomass are shown in Figure 3. For the 
sampled one time seaweeds species (C. acicularis in the autumn, and G. multipartite in 
winter), HVM values are shown in Table 3. 
 

Arsenic. Arsenic contents in the seaweeds knew many changes depending of the species 
and seasons (Figure 3). They were in the range of 3.92 to 28.14 µg g-1 DW in the spring, 
1.36 to 10.58 µg g-1 DW in the summer, 2.57 to 27.67 µg g-1 DW in the autumn, and 
went down to very low values (0.11 to 0.49 µg g-1 DW) for all species in winter. They 
were mostly higher than the toxicity threshold limit of 3 µg g-1 DW recommended by 
(AFSSA 2009) in most species (Figure 3, Table 3).  

The highest values were recorded for the Phaeophyceae (L. ochroleuca, S. 
vulgare, and F. spiralis) in the spring (12 to 28.14 µg g-1 DW), with a pattern of contents 
distribution as: L. ochroleuca > S. vulgare > F. spiralis, and in the summer (7.2 to 10.6 
µg g-1 DW), with a pattern of distribution as: F. spiralis > L. ochroleuca > S. vulgare, and 
in the autumn for F. spiralis (15.8 µg g-1 DW),  while the contents of L. ochroleuca and S. 
vulgare in the autumn  went down to 4.9 and 2.6 µg g-1 DW respectively (Figure 3).  

For Rhodophyceae, G. corneum contents were in the range of 3.2 to 3.92 µg g-1 
DW in the spring and summer and increased to 6.4 µg g-1 DW in the autumn. G. 
pulchellum contents were low for the three seasons, in the range of 3.6 to 4.3 µg g-1 DW, 
while Gracilaria sp. contents were higher in the spring and autumn, in the range of 5.22 
to 7.7 µg g-1 DW (Figure 3). The autumn sample of the species C. acicularis recorded the 
highest value in As content (27.7 µg g-1 DW) (Table 3). 

The Chlorophyceae U. lactuca contents decreased from 5.6 to 1.37 µg g-1 DW 
from spring to summer and increased again to 7 µg g-1 DW in the autumn. 
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Figure 3. Seasonal changes in the seaweed species HVM contents (in µg g-1 DW) in the 
coastal zone of El Jadida region (Spr: spring, Sum: summer, Aut: autumn, Win: winter). 
 
According to the ANOVA analysis results (Table 4), there is no significant effect of species 
on As contents distribution (p > 0.05), while there was a highly significant effect of 
seasons (p < 0.005). The Pheophyceae species and C. acicularis seemed to be the most 
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bioaccumulating macroalgae of As. The spring, and autumn seasons seemed to be the most 
suitable for this metal bioaccumulation, while the winter seemed to be the season within 
which the seaweeds can eliminate this toxic metal, allowing the quality of their biomass to be 
conforme with the standards of safety regarding this element (< 2 µg g-1 DW). 
 

Table 4 
Summary of main statistics and two-way ANOVA HVM analyses results (95% confidence) 
 

 As Pb Cd Cr 
2 way ANOVA (p values) 

Species 0.052372  0* 0.8606 0.00000478* 
Season 0.005072* 0.00001271* 0.1101 0.008408* 

Note: *statically significant differences (p < 0.05). 
 
Lead. Except the highest lead content which was detected in C. acicularis autumn sample 
(24.79 µg g-1 DW), followed by G. spinulosum (11 µg g-1 DW), the contents were under 
the threshold limit of toxicity of of 3 µg g-1 DW recommended by (European Commission 
07/2008), and ranged from undetectable to 0.17 µg g-1 DW in spring, 0.02 to 1.067 µg g-

1 DW in summer, 0.09 to 1.45 µg g-1 DW in autumn, and were the lowest (0.025 to 0.1 
µg g-1 DW) in winter. In the spring, lead was undetectable in most species, except for G. 
corneum and G. pulchellum (0.05 and 0.18 µg g-1 DW respectively) (Figure 3, Table 3). 
In the summer, the highest contents values, ranging from 0.72 to 1.1 µg g-1 DW were 
recorded according to the pattern: G. spinulosum > G. pulchellum > G. corneum > U. 
lactuca. S. vulgare contents were in the range of 0.45 µg g-1 DW. Lead was undetectable 
in F. spiralis and L. ochroleuca biomass in the summer (Figure 3). In the autumn, the 
highest values (1.013 to 1.45 µg g-1 DW) were detected according to the following 
pattern: U. lactuca > G. corneum > L. ochroleuca. In the same season, the contents 
were lower (0.415 to 0.67 µg g-1 DW) for the following species: S. vulgare > Gracilaria 
sp. > F. spiralis. In the winter, except for L. ochroleuca (0.1 µg g-1 DW), the lead 
contents went down to 0.04 to 0.01 µg g-1 DW and according to the pattern: U. lactuca > 
Gracilaria sp. > G. pulchellum, and to 0.003 to 0.008 µg g-1 DW, according to the 
pattern: F. spiralis > S. vulgare > G. corneum (Figure 3). The ANOVA analysis results 
(Table 4) showed there was very high significant effect of species and seasons on lead 
distribution (p < 0.005). The summer and autumn were the seasons during which 
occurred a slight bioaccumulation, while it was non-significant during spring and winter. 

 

Cadmium. Except winter season, most of the species had very high contents in cadmium 
in comparison with the toxicity limit value of 3 µg g-1 DW (AFSSA 2009) and ranged from 
3.71 to 0.23 µg g-1 DW) in spring, 6.78 to 0.02 µg g-1 DW in summer, 6.89 to 0.91 µg g-1 

DW in autumn, with a peak of 15.1 µg g-1 DW in the C. acicularis autumn sample, and 
0.27 to 0.009 µg g-1 DW in winter. Spring and summer contents were low and ranged 
from 1 to 3.3 µg g-1 DW for G. pulchellum, G. corneum, and S. vulgare, while they rose 
up from 3.7 to 6.8 µg g-1 DW for F. spiralis, and remained very low for U. lactuca, 
Gracilaria sp. and L. ochroleuca (0.03 to 0.8 µg g-1 DW). The autumn cadmium contents 
in U. lactuca and G. corneum were higher (6.9 and 4.8 µg g-1 DW respectively), while the 
ones of S. vulgare, G. multipartita, L. ochroleuca and F. spiralis were lower and remained 
in the range of 0.9 to 1.7 µg g-1 DW. Winter contents went down to the range of 0.01 to 
0.08 µg g-1 DW for most species, except for F. spiralis (0.3 µg g-1 DW) (Figure 3,  Table 3). 
The ANOVA test didn’t give any significant effect of species or seasons (p > 0.05). (Table 4). 
  

Chromium. The contents of total chromium ranged from 0.22 to 2.08 µg g-1 DW in spring, 
0.16 to 5.93 µg g-1 DW in summer, 0.01 to 5.9 µg g-1 DW in autumn, 0.16 to 1.33 µg g-1 

DW in winter (Figure 3). In the spring, the contents were higher and ranged from 0.98 to 
2.1 µg g-1 DW according to the pattern U. lactuca > G. corneum > G. pulchellum > 
Gracilaia sp. In the summer, G. corneum and U. lactuca contents went down to 0.8 µg g-1 

DW to undetectable values, while G. pulchellum maintained a close content as in the 
spring, and S. vulgare content increased from 0.6 µg g-1 DW in the spring to 1.2 µg g-1 

DW in the summer. The contents remained lower (0.16 to 0.4 µg g-1 DW) during the 
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spring and summer for L. ochroleuca and F. spiralis. In the autumn, C. acicularis showed 
the highest content value of 5.9 µg g-1 DW, while the rest of species had contents in the 
range of 0.6 to 0.83 µg g-1 DW for G. corneum > L. ochroleuca > S. vulgare, and in the 
range of 0.16 to 0.42 µg g-1 DW for Gracilaria sp. > F. spiralis and U. lactuca. U. lactuca 
and S. vulgare are in decrease in contamination from spring to autumn, G. corneum and 
F. spiralis remained stable after the decrease recorded in summer, while L. ochroleuca 
contents increased from 0.16 to 0.7 µg g-1 DW from the summer to the autumn. The 
contents went down to values less than 0.07 µg g-1 DW in the winter for all winter 
sampled species (Figure 3, Table 3). The ANOVA analysis results (Table 4) showed there 
was very high significant effect of species and seasons on chromium bioaccumulation (p 
< 0.005). The spring and summer were the seasons during which occurred 
bioaccumulation, followed in a less degree by autumn season, while this bioaccumulation 
was non-significant during winter.  
 
Discussion 
 
Risks of seaweeds contamination with pesticides. The distribution of pesticides in 
the environment varies according to their chemical structure, physical properties, 
formulation type, application method, the climate and agricultural conditions (Topçu 
Sulak 2012). Pesticides are also applied directly to water to control unwanted algae and 
invertebrates (Kaya 2007). All these pollutants arrive to the marine environment and are 
a source of contamination of all the bodies of the ecosystem (water column, sediments, 
fauna and flora). Most of pesticides are used in agriculture. Lindane, also known as γ-
HCH (hexachlorocyclohexane) or γ-BHC (benzene hexachloride), is widely used in 
agriculture as insecticide (ATSDR 2005), Aldrin is used in agriculture to treat seed and 
soil to control worms, beetles and termites, and is banned in most of the countries since 
1990, it is a highly carcinogenic substance banned for 20 years due to its persistence and 
toxicity (Sundhar et al 2021). Endrin exists as endrin aldehyde or endrin ketone in the 
environment, mainly in bottom sediments of water bodies (HHS 1996), it is 
noncarcinogenic to humans; however, it affects the central nervous system (IARC 1987). 
The accumulation of HCH residues was found to be more related with the fruiting season 
of the seaweeds (Sundhar et al 2019). It is a potential occupational carcinogen with IDLH 
(immediately dangerous to life or health) value of 25 mg m-3 in humans (Baskin 1975). 
The use of endosulfan is restricted in agriculture due to its acute toxicity. Methoxychlor 
causes reproductive toxicity in humans but not classified as a carcinogen (Cummings 
1997), but in others research it has no carcinogenic effect on humans but causes liver 
damage in animals (Kim & Lee 2017).  

The results showed that all the seaweeds species had pesticides contents very low 
and less than the quantification limit (LQ) < 0.010 µg g-1 DW so, widely under the limit of 
toxicity for all seasons. So no risk of pesticides toxicity could be related to the 
consumption of the seaweeds of El Jadida region coastal zone.  
 
Risks of contamination with heavy metals. Previous studies had demonstrated the 
high ability of seaweeds to accumulate HVMs in their tissue, so many researchers had 
focused in studying the use of these seaweeds ability to bind and accumulate metals 
(Vasquez & Guerra 1996). In this way, they can be considered as good indicators of 
micropollution in the marine environment (Weis et al 2004). Seasonal variations of HVMs 
in macroalgae have been noted by many authors (Rönnberg et al 1990; Catsiki et al 1991) 
while others have reported that there was no variation (Haug et al 1974; Shiber 1980).  

In the present study, the results showed significant bioaccumulation of HVM in all 
species at varying levels, depending on the species and seasons, and also on the nature 
of the HVM. Comparison of seaweeds HVM contents with those naturally found in surface 
waters (seas and rivers) can confirm the bioaccumulation of HVMs by these seaweeds in 
natural environments (Wedepohl 1991). The distribution of HVM in the seaweeds is highly 
dependent of the one in seawater, and which is highly dependent of the anthropogenic 
inputs and of the biogeochemical cycle in seawater of these metals, which changes 
according to seasonal variations. This could be demonstrated in the case of the present 
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study within the seasonal changes of arsenium, lead and chromium contents in the 
seaweed that occurred during the study period, with the highest values in spring and 
autumn and the lowest in the winter. The variation of upwelling activity that occurs in the 
study area is also a very important factor that could influence the seaweeds HVM 
distribution among seasons in the studied area. 
 
Arsenic. According to Neff (1997), arsenic occurs in the seawater and seabed sediment 
under mineral forms (arsenate (As V) more dominant in oxygenated productive marine 
ecosystems seawaters, and oxidized sediments primarily associated with iron 
oxyhydroxides, and arsenite (As III)), more toxic and potentially carcinogenic, 
representing 10 to 20% of total arsenic in seawater. In reducing marine sediments, 
arsenate is reduced to arsenite and is associated primarily with sulfide minerals (Neff 
1997). Natural concentrations of arsenic in coastal marine and ocean waters are always 
much higher than the US EPA (1980) human health (fish consumption) water quality 
criterion for total arsenic in seawater (Neff 1997), the average concentration of total 
arsenic in the ocean is about 1.7 μg L-1, about two orders of magnitude higher than the 
value of 0.0175 μg L-1 US Environmental Protection Agency's human health criterion for 
fish consumption (US EPA 1980). The concentration of total arsenic in clean coastal 
waters is 1 to 3 mg L-1, with a mean of about 1.7 mg L-1 (Andreae 1979; Andreae & 
Andreae 1989; Li 1991), a concentration about 100 times higher than the US EPA human 
health water quality criterion (fish consumption) value (0.0175 mg L-1) (Neff 1997). The 
uncontaminated marine sediments contain 5 to 40 µg g-1 DW total arsenic (Neff 1997). 
Marine algae accumulate arsenate from seawater, reduce it to arsenite, and then oxidize 
the arsenite to a large number of organoarsenic compounds (Neff 1997). The algae 
release arsenite, methylarsonic acid, and dimethylarsinic acid to seawater. For the most 
part study period (except in winter), the seaweeds had shown high arsenic contents, 
much higher than 3 mg kg-1 DW recommended by AFSSA (2009) and especially brown 
seaweeds, which are widely known to have a high capacity to accumulate arsenic from 
seawater, their bioaccumulation capacity was estimated to be hundred times higher than 
the one of land plants (Ito & Hori 1989). The lowest values of arsenic where found in U. 
lactuca and G. corneum. These results show that arsenic contents were highly variable 
between species, and the concentrations were higher in brown algae than in green and 
red ones (Phillips 1990). Nevertheless, this difference was not significant (p > 0.05), 
while it was obvious that season has a strong effect on arsenic distribution in seaweed 
tissues (p < 0.025). This could be likely related to concentration of dissolved arsenic in 
surface waters in the continental shelf, which varies seasonally due to natural cycling of 
arsenate between sediments and the overlying water column (Byrd 1988), which 
behavior resembles that of phosphate (Maher 1984), which is known to undergo seasonal 
remineralization and mobilization, with peak remobilization often in late summer 
(Hopkinson Jr. 1987). Comparison of seaweeds HVM contents with a previous study in 
the same area conducted by Caliceti et al (2002) showed rather a wider range in arsenic 
contents (0-360 µg g-1 DW, versus 0.12 to 27.7 µg g-1 DW in the present study). They 
found the highest values in the brown seaweed Cystoseira barbata, and higher values in 
L. ochroleuca (28.14 µg g-1 DW). For U. lactuca, F. spiralis and Gracilaria sp., the 
concentrations in the present study were lower than those reported in Caliceti et al 
(2002), Miao et al (2014) for S. vulgare, and de la Rocha et al (2009) for L. ochroleuca, 
and higher than those reported by Rezzoum et al (2016) for F. spiralis and L. ochroleuca. 
The high arsenic levels recorded in the seaweeds are likely related to the presence of a 
high level in arsenic in the seawater of the study region.  
   
Lead. Lead is a non-essential and no biodegradable metal that occurs in the environment 
and mostly forming complex compounds with other metals as copper, selenium, and zinc 
(Botté et al 2022). In marine environment, lead comes from the terrestrial areas and 
could have many perturbation effects on invertebrate’s lifecycle (Botté et al 2022). 
Seaweeds lead contents in the present study were lower than the limit of toxicity of 5 µg 
g-1 DW (Mabeau & Fleurence 1993), 3 µg g-1 DW (European Commission (07/2008), and 
lower than recorded in the study of Caliceti et al (2002) for U. lactuca, Gracilaria sp., and 
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F. spiralis, where they reported higher lead mean concentrations values of 7.3±6.4 µg g-1 

DW, 6.9±6.2 µg g-1 DW, and 1.6±0.6 µg g-1 DW respectively. Comparison with research 
works results in other world regions for U. lactuca showed high variation in the contents, 
which remained higher than the present study results, namely 0.67 to 5.77 mg kg-1 in 
Sicily (Bonanno et al 2020), 1.44 to 2.20 µg g-1 DW in Suez Gulf, Agaba Gulf and Suez 
Canal in Egypt (Mourad & Abd El-Azim 2019), 2.64±3.45 µg g-1 DW for Senegalese coast 
(Diop et al 2016), while in other regions the contents were lower than in the present 
study (0.55±0.99 µg g-1 DW, 0.02 mg kg-1 and 0.02 mg kg-1, respectively in Tartous 
(Syria) (Al Masri et al 2003), Thermaikos and Crete (Greece) (Sawidis et al 2001).  
 
Cadmium. The ocean cadmium concentration is less than 0.5 µg L-1, in seawaters; 
cadmium occurs at different levels, higher in upwelling surface waters and continental 
shelf surface waters (50 to 70 µg L-1), due to the release of cadmium from the bottom 
sediment of the seabed (Mart & Nürnberg 1986), and much higher in coastal areas 
impacted by anthropogenic pollution. Cadmium is a non essential and a highly toxic HVM. 
In the studied area, cadmium contents were much higher than the limit of toxicity value 
of 3 µg g-1 (European Commission 07/2008), in U. lactuca and G. corneum, in the 
autumn, and F. spiralis in the summer highlighting a very important contamination with 
this element at these periods. While these contents remained lower than the toxicity limit 
for the rest of seasons and for the rest of species. This variation could be explained by 
the capability of the three first species to accumulate cadmium that occurs in abundance 
in seawater (Kaimoussi 2002), concomitant with a higher activity of the upwelling activity 
that occurs in this zone, where the rise of deep waters rich in HVMs, including cadmium 
(Sidoumou et al 1992; Romeo et al 1993), make the surface waters very rich in trace 
elements. Cadmium levels in U. lactuca were higher than those reported by Bonanno et 
al (2020) in the coast of Sicily in Italy, Mourad & Abd El Azim (2019) in Suez Gulf, Aqaba 
Gulf and Suez Canal in Egypt, Valdes et al (2018) in Valparaiso in Chile, and lower than 
those reported by Al-Masri et al (2003) in Tartous in Syria (11.0 µg g-1 DW). Cadmium 
contents in Gracilaria sp. and F. spiralis were higher than those reported by Caliceti et al 
(2002). Gelidium spp. contents were higher than those found by Besada et al (2009). L. 
ochroleuca contents were lower than those found by Besada et al (2009).     
  
Chromium. Chromium is considered an important micronutrient in animal and human 
nutrition (Skrzypczyk et al 2023), the reduced form Cr(III) is one of the essential 
elements and the oxidized form Cr(VI) is toxic and carcinogenic at high doses (Chiffoleau 
1994). The biogeochemistry depends on the oxic level of the marine environment:  in the 
fully dissolved phase in the form of Cr(III) in anoxic environments and in the Cr(VI) form 
in well-oxygenated ocean waters (Chiffoleau 1994). The concentrations of chromium in 
seaweeds of El Jadida had previously been determined by Caliceti et al (2002), Bonnano 
et al (2020) and Mourad & Abd El-Azim (2019). Many studies agree that U. lactuca has 
numerous features that make it one of the best bioindicators of metal pollution in marine 
environment (Areco et al 2021). The concentrations of chromium in U. lactuca were lower 
than those reported by Bonnano et al (2020) in coast of Sicily in Italy, Chakraborty et al 
(2014) in golf of Kutch in India, and in Tartous in Syria (Al Masri et al 2003), but higher 
than those determined by Mourad & Abd-El-Azim (2019) in Egypt and Diop et al (2016) 
in Senegalese coast. For Gracilaria sp. the concentrations are higher in El Jadida region in 
comparison with Caliceti et al (2002), but for F. spiralis the concentrations are lower than 
those reported by Caliceti et al (2002).   
 
Permissible consumption limit of seaweeds from the coastal zone of El Jadida 
region. Seaweeds are considered as a high quality food for human health enhancement 
if consumed in a reasonable way. The evaluation of Monteiro et al (2019) on human 
health risk assessment of seaweed consumption was performed based on a daily serving 
of different species of seaweeds of 5 g of DW per body weight (bw) per day and showed 
that the exposure to lead and cadmium was respectively 0.0796 and 0.0387 µg/kg 
bw/day for F. spiralis, 0.0214 and 0.0568 µg/kg bw/day for the Laminariale Saccharina 
latissima, and 0.0065 and 0.0031 µg/kg bw/day for U. lactuca. 
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Carefully HVM consumption in very low quantities could prevent toxicity risks. 
Permissible comsumption limit of HVM (expressed in µg/kg body weight (bw) per day) 
was established by the EFSA (2009) as: Cd ≤ 0.36 µg/kg bw/day, Pb ≤ 0.5 µg/kg 
bw/day, and As ≤ 0.3 µg/kg bw/day. Cd limit was lowered to 0.35 µg/kg bw/day by 
ANSSES (2020). The PCL of Cr was estimated to be equal or less than 0.3 µg/kg bw/day 
(US EPA 1980). Nowaday, no PCR was established for Cr, which is considered as a 
valuable micronutrient. A seaweed daily consumption rate of 5 to 10 g DW per person (of 
bw of 85 kg) could be safe and sufficient to supply the body needs in essential 
micronutrients, including Cr (Skrzypczyk et al 2023). ANSES (2020) lowered Cd PCL to 
0.35 µg/kg bw/day following investigations on the impact of Cd PCL of 0.36 µg/kg 
bw/day on human health.  

Herein, an estimation of the permissible consumption limit (SW-PCL) of the 
seaweeds from El Jadida region coastlinet was calculated using the note below Table 5, 
and relying on the aforementioned HVM – PCL (EFSA 2010). For cadmium, the value of 
0.35 µg/kg bw/day (ANSSES (2020) was used. Until now, there is no defined and reliable 
threshold of chromium consumption by health authorities. So, SW-PCR was not 
calculated for it. Calculations were based on the highest value of HVM contents within the 
study period to avoid any health risk. The mean body weight used was 75 kg.  
 

Table 5 
HVM contents in seaweeds species and seaweed permissible consumption limit (SW-PCL)  
 

Species HVM contents 
(µg g-1 DW) 

SW-PLC 
(g DW/kg bw/day) 

SW-PCL 
(DW individual -1 day-1) 

 Arsenic 
Ul-la 6.95 0.050 3.8 
Gr-sp 7.78 0.045 3.4 
Ge-co 6.35 0.055 4.1 
Ge-pu 4.33 0.081 6.1 
Ge-spi 6.91 0.051 3.8 
Sa-vu 16.21 0.022 1.6 
La-oc 28.14 0.012 0.9 
Fu-spi 15.84 0.022 1.7 
Gr-mu 2.44 0.143 10.8 
Ch-ac 27.67 0.013 0.9 
Hy-mu 5.70 0.061 4.6 

 Lead 
Ul-la 1.14 0.439 32.9 
Gr-sp 0.56 0.893 67.0 
Ge-co 1.06 0.472 35.4 
Ge-pu 0.90 0.556 41.7 
Ge-spi 1.06 0.472 35.4 
Sa-vu 0.45 1.111 83.3 
La-oc 1.01 0.495 37.1 
Fu-spi 0.41 1.220 91.5 
Gr-mu 0.09 5.556 416.7 
Ch-ac 24.79 0.020 1.5 
Hy-mu 0.31 1.613 121.0 

 Cadmium 
Ul-la 6.69 0.045 3.4 
Gr-sp 2.80 0.107 8.0 
Ge-co 4.83 0.062 4.7 
Ge-pu 2.29 0.131 9.8 
Ge-spi 1.29 0.233 17.4 
Sa-vu 3.29 0.091 6.8 
La-oc 1.43 0.210 15.7 
Fu-spi 6.78 0.044 3.3 
Gr-mu 1.33 0.226 16.9 
Ch-ac 1.50 0.200 15.0 
Hy-mu 2.33 0.129 9.7 

HVM PCL used for calculation is as follows: Cd ≤ 0.35 µg/kg bw/day, Pb ≤ 0.5 µg/kg bw/day, and As ≤ 0.3 
µg/kg bw/day, bw: individual body weight: 75 kg. 
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The limitations of seaweeds consumption is essentially due to cadmium and 
arsenic high levels, while lead contents remain almost very low during the whole period. 
The PCL of seaweeds due to arsenic contents changes mainly from 3.4 to 3.8 g 
DW/individual/day for most species, except for the three Pheophyceae and C. acicularis 
(< 1.8 g DW/individual/day). 

The PCL of seaweeds due to cadmium contents is higher than 8 g 
DW/individu/day, while it remains in the range of 3 to 4.7 g DW/individual/day for U. 
lactuca, G. corneum, and 6.8 g DW/individual/day for S. vulgare. 

The PCL of seaweeds due to cadmium contents is very high for most species (> 33 
g DW/individual/day), except for C. acicularis (1.5 g DW/individual/day), while it stays in 
the range of 3 to 4.7 g DW/individual/day for U. lactuca, and G. corneum, and 6.8 g 
DW/individual/day for S. vulgare. 

The most relevant seaweed PCL should be the lowest value of the three calculated 
PCL. For example, according to Table 5, the seaweed PCL should be 10.8 g 
DW/individual/day for G. multipartita, 3.4, 3.4, 3.8, 4.1, 4.6, and 6.1 g 
DW/individual/day, respectively for U. lactuca, Gracilaria sp., G. spinulosum, G. corneum, 
H. musciformis, and G. pulchellum, and very low, less than 1.8 g DW/individual/day for 
the three Pheophyceae and C. acicularis. These values remain lower than the seaweeds 
PCL used worldwide in Asia (8.5 g/day in South Korea), 5.2 in China (Chen et al 2018), 
and 1.4 in Japan (Murai et al 2021). 
 
Conclusions. Heavy metals in the seaweeds of the El Jadida region coastal zone have 
been found in a wide range of concentrations, mostly higher than the toxicity threshold 
limit values, and showed a great difference between species and seasons. Pesticides 
remained under the detectable limit during the whole period of the study. Thus, it was 
possible to conclude that there was no risk of contamination of seaweeds with pesticides, 
while the risk was more important due to heavy metals, especially cadmium and arsenic. 
The presence of heavy metals in the seaweed of the coast of El Jadida is still relatively 
lower than that found in other regions of the world. 

Although the present study suggested that human exposure to arsenic, cadmium, 
chromium and lead through seaweed consumption was low if the permissible 
consumption limit is respected, toxic metals should be surveyed in the seaweeds and 
seawater using analysis methods of the highest performances and precision, and species 
with high bioaccumulation potential be used as bioindicators of toxicity. 
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