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Abstract. Salinity affects growth and biochemical composition of microalgae and the ability of 
microalgae to tolerate wide range of salinity is one of the important criteria for successful mass 
cultivation in outdoor open pond systems for any commercial application. The aim of this study was to 
determine the growth and lipid production of the newly isolated marine microalga Nannochloropsis sp. 
UHO3 at increasing salinity. The strain was isolated from a coastal area in Kendari, Southeast Sulawesi, 
Indonesia in June 2017. The strain was cultured in 500 mL Schott bottles containing 300 mL f/2 medium 
at increasing salinities from 2 to 7% NaCl, light intensity of about 100 μmol photon m-2 s-1, 12:12 hours 
light and  dark cycles at ambient room temperatures. The highest specific growth rate (0.779±0.02 d-1) 
was achieved at 3% salinity and the lowest (0.455±0.02d-1) was obtained at 7% salinity. The cultures 
grown at 3% salinity had the highest lipid content and lipid productivity (22.06±2.92% Ash-Free Dry 
Weight (AFDW) and 0.161±0.009g L-1 d-1, respectively). This study suggests that the alga has a wide 
salinity tolerance (2-7% NaCl) and produce high lipid at 3-4% salinity. Hence, the species is potential for 
outdoor mass cultivation in saline-hypersaline media for biodiesel feedstock due to its high growth rate 
and lipid productivity. 
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Introduction. Microalgae are photosynthetic microorganisms including the prokaryotic 
cyanobacteria and eukaryotic microalgae that use light energy and carbon dioxide for 
biomass production (Benneman 1997; Richmond 2004; Mata et al 2010). They are an 
extremely heterogeneous group of microorganisms which have a wide range of potential 
applications including for feed, food, cosmetics, pharmaceutical and biofuels (Olaizola 
2003; Spolaore at al 2006; Borowitzka 2013a).   

Microalgae have been suggested as biodiesel feedstock due to their ability to 
produce lipids that can be converted to biodiesel (Chisti 2007; Mata et al 2010; Parmar 
et al 2011). Yields of microalgal lipids are higher than terrestrial crops. Depending on the 
lipid content, microalgae can  produce about 58,700-136,900 L oil ha-1 year-1 compared 
to that of soybean (636 L oil ha-1 year-1), jatropha (741 L oil ha-1 year-1), canola (974 L 
oil ha-1 year-1) and palm oil (5366 L oil ha-1 year-1) (Ahmad et al 2011). Furthermore, 
microalgae are more sustainable to grow for lipid production due to their ability to grow 
on non-arable land and to utilise sea water so that they will not compete with food crops 
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for habitats and for limited source of fresh water (Borowitzka & Moheimani 2013). They 
also can use carbondioxide from industrial plants for biodiesel production (Sawayama et 
al 1995; Yun et al 1997; Chisti 2007). Given the higher growth rate and short generation 
time as well as high lipid content (up to 80% of dry weight) and lipid productivity, it is 
clear that microalgae are potential for large scale oils production (Converti et al 2009). 

The lipid content in microalgae is species specific and it is influenced by 
environmental factors. Salinity is one of the important factors influencing the growth and 
biochemical composition of marine microalgae (Al-Hasan et al 1987, 1990; Aizdaicher et 
al 2010; Takagi et al 2006; Ranga Rao et al 2007; Zhila et al 2011; Fon Sing & 
Borowitzka 2016; Indrayani et al 2018). Salinity fluctuation is inevitable under outdoor 
conditions and when the microalgae species are cultured in outdoor open ponds, 
evaporation of the cultures in hot sunny days increases salt concentration in the medium. 
To make up for evaporation losses, freshwater is added to the culture to maintain 
constant salinity. Alternatively, saline water is used leading to increase in salinity over 
time (Borowitzka 2013b). Therefore, if the latter option is used, microalgae species with 
high salinity tolerance is preferred to obtain reliable cultures for long period. In addition, 
microalgae species capable to grow well at high salinity will potentially less prone to 
contamination in large-scale culture for long period, emphasizing the importance of 
evaluating high salinity tolerance of marine microalgae species intending to be mass 
cultured in outdoors. 

Nannochloropsis sp. is one of the most studied microalgal species for lipid and 
biodiesel production (Chisti 2007; Mata et al 2010; Cheng-Wu et al 2001; Campos et al 
2014; Bartley et al 2015). In addition, members of the Nannochloropsis genus exhibit 
high growth rate, lipid productivity and tolerance to a wide range of environmental 
conditions (Richmond & Cheng-Wu 2001; Gu et al 2012a, 2012b; Fakhri et al 2015; 
Bartley et al 2015). The present study investigates the effect of increasing salinity on the 
growth and lipid production of the newly isolated  microalgal strain Nannochloropsis sp. 
UHO3. This study could provide information about the salinity tolerance and the optimum 
salinity for growth and lipid production of the microalga Nannochloropsis sp. UHO3. 
 
Material and Method 
 
Source of algal strain. This study was conducted from March to June 2019. The algal 
strain used in this study is Nannochloropsis sp. UHO3 isolated from Kendari Waters, 
Southeast Sulawesi, Indonesia in June 2017. The strain was isolated using agar plating 
technique (Andersen & Kawachi 2005) in f/2 medium (Guillard & Ryther 1962). The strain 
is non-axenic and maintained in Microalgae Culture Collection at Faculty of Fisheries and 
Marine Science, Halu Oleo University, Kendari, Southeast Sulawesi, Indonesia. 
 
Culture condition. The Nannochloropsis cultures were grown in 500 mL conical flasks 
containing 300 mL of f/2 medium at increasing salinity (2, 3, 4, 5, 6 and 7% NaCl (w/v).  
The cultures were initially grown at 2% salinity at initial cell density of about 150x104 

cells mL-1 for 10 days in a batch mode and gradually increased the salinity to 7% salinity 
with 1% increment after 10 days of culturing. The cultures were incubated at room 
temperature (26-30oC), light:dark cycle 12 h:12 h, light intensity of about 100 µmol 
photons m-2 s-1 (in triplicates). The cultures were bubbled with air to facilitate mixing the 
cultures. Cell counting was carried out every two days, whereas dry weight (DW), ash 
free dry weight (AFDW) and lipid were measured prior to dilution.   
 
Analytical methods. The growth of the cultures was monitored by counting the 
numbers of microalgae cells every two days using a Neubauer haemocytometer 
(Moheimani et al 2013).  

The specific growth rate (SGR) was calculated using the following equation:  
SGR = (Ln(N2/N1)/(t2-t1) 

 
where N1 and N2 are the cell density at time 1 (t1) and 2 (t2) within the exponential 
phase.  
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For DW determination, five mL of culture was filtered through pre-weighed and 
pre-combusted Whatman GF/C, 25 mm filter paper using a Millipore filter apparatus. The 
filters were removed from the Millipore filter apparatus, folded and patted dry with a 
paper towel. The filters were dried in an oven at 75oC for 5 hours and then weighted 
(Moheimani et al 2013). DW was determined by the following equation:  

 
 
The filters were then transferred to a furnace at 450oC and ashed for 5 hours and 

weighted after cool. Organic dry weight (AFDW) was calculated by the following equation:  
 

 
Biomass productivity was calculated by the equation: 

 
 
Total lipid determination was conducted by the method of Bligh & Dyer (1959) as 

modified by Kates & Volcani (1966). Lipid productivity was calculated using the following 
equation: 

 
 
Statistical analysis. Significant differences between treatments were analysed with a 
one-way analysis of variance (ANOVA). Pairwise multiple comparison procedure (Holm-
Sidak Method) was used to precisely test differences between conditions. All statistical 
analysis was performed using Sigma-Plot 14 Systat Software Inc., USA.  

 
Results 
 
Growth of the Nannochloropsis sp. UHO3. The growth of the Nannochloropsis for 
about 60 days of culturing at increasing salinity from 2 to 7% NaCl is shown in Figure 1. 
The alga showed good growth over the wide range of salinity tested. The alga was 
initially grown at 2% salinity at initial cell density of about 150x104 cells mL-1 and 
cultured until reaching the stationary phase (10 days) at the cell density of about about 
2478±118x104 cells mL-1. The salinity of the cultures was increased by 1% NaCl at 10 
days interval until the salinity of the cultures reached 7% NaCl. The cell density of all 
cultures increased up to two folds in the first two days of culturing indicating that the 
cells could adapt well with increasing salinity. From day 2 to day 4, all the cultures 
showed exponential growth before entering early stationary phase. The highest 
maximum cell density of about 3565±201x104 cells mL-1 was achieved at 4% salinity and 
the lowest maximum cell density (2356±187x104 cells mL-1) was obtained at the highest 
salinity (7% NaCl).   
 The specific growth rate (SGR) of the alga was significantly affected by the salinity 
tested (One Way ANOVA, p < 0.001). The SGR of the Nannochloropsis decreased at 
increasing salinity in which the highest SGR (0.779±0.02 d-1) was achieved when rising 
the salinity from 2 to 3% salinity and the lowest (0.455±0.02 d-1) obtained when rising 
the salinity from 6 to 7% salinity (Figure 2). There was a significant difference in the SGR 
between 2 and 7%, 3 and 7%, 4 and 7%, 5 and 7%, 2 and 6%, 3 and 6%, 4 and 6%, 3 
and 5%, 4 and 5%, 3 and 2%, 4 and 2% (Holm-Sidak Method, p < 0.05) but no 
significant difference in the SGR between 2 and 5%, 3 and 4%, 5 and 6%, 6 and 7% was 
observed (Holm-Sidak Method, p > 0.05).  
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Figure 1. Growth of the Nannochloropsis sp. UHO3 at increasing salinity. Values represent 

mean±standard deviation (n = 3). 

 
Figure 2. Specific growth rate (d-1) of the Nannochloropsis sp. UHO3 at increasing 

salinity. Values represent mean±standard deviation (n = 3). 
 
Biomass yield and productivity of the Nannochloropsis sp. UHO3. Biomass yield of 
the Nannochloropsis sp. was not affected by the salinity tested (One Way ANOVA, p = 
0.101). However, there was a significant difference in the biomass productivity between 
salinity (One Way ANOVA, F(5,12) = 19.5, p < 0.001). The highest biomass productivity 
was achieved at 4% salinity (0.814±0.036 g L-1 d-1) and the lowest at 7% salinity 
(0.418±0.01g L-1d-1). Significant difference in the biomass productivity was observed  
between salinity 4 and 7%, 4 and 6%, 3 and 7%, 4 and 5%, 4 and 2%, 3 and 6%, 3 and 
5%, 3 and 2%, 2 and 7%, 5 and 7% (Holm-Sidak Method, p < 0.05) but no significant 
difference in the biomass productivity was observed between salinity 4 and 3%, 6 and 
7%, 2 and 6%, 5 and 6%, 2 and 5% (Holm-Sidak, p > 0.05) (Figure 3). 
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Figure 3. Biomass yield (g L-1) and biomass productivity (g L-1 d-1) of Nannochloropsis sp. 

UHO3 at increasing salinity. Values represent mean±standard deviation (n = 3). 
 
Lipid of Nannochloropsis sp. UHO3. The lipid yield of the alga (g L-1) was significantly 
affected by the salinity tested (One Way ANOVA, p = 0.001). The highest lipid yield was 
0.207±0.012 g L-1 achieved at 3% salinity and the lowest was 0.127±0.012 g L-1 
obtained at 7% salinity (Figure 4). The lipid content of the alga was significantly different 
between salinity 3 and 7%, 3 and 6%, 4 and 7%, 3 and 2% (Holm-Sidak Method, p < 
0.05) but no significant difference was observed between salinity 5 and 7%, 4 and 6%, 4 
and 2%, 3 and 5%, 5 and 6%, 2 and 7%, 5 and 2%, 3 and 4%, 4 and 5%, 6 and 7%, 2 
and 6% (Holm-Sidak Method, p > 0.05).    

The lipid content of the alga (%AFDW) was significantly affected by the salinity 
tested (One Way ANOVA, p = 0.001). The alga achieved its highest lipid content when 
grown at 3% salinity (22.06±2.92% AFDW) and the lowest lipid content achieved when 
the alga was grown at 7% salinity (13.79±1.54% AFDW). There was a significant 
difference in the lipid content between 3 and 7%, 3 and 6% (Holm-Sidak Method, p < 
0.05). However, no significant difference was observed between salinity 3 and 2%, 3 and 
4%, 5 and 7%, 3 and 5%, 5 and 6%, 4 and 7%, 2 and 7%, 4 and 6%, 2 and 6%, 5 and 
2%, 5 and 4%, 6 and 7%, 4 and 2% (Holm-Sidak Method, p > 0.05) (Figure 4).  

The lipid content per cell (ng) of the alga was not affected by the salinity tested 
One Way ANOVA, p = 0.170). The lipid per cell decreased as salinity increase ranging 
from 3.94 to 7.26 ng cell-1 (Figure 4). 

The lipid productivity of the alga was significantly affected by the salinity (One 
Way ANOVA, p < 0.001). The highest lipid productivity obtained at 3% salinity 
(0.161±0.009 g L-1 d-1) and the lowest lipid productivity obtained at 7% NaCl 
(0.058±0.008 g L-1 d-1). The lipid productivity was significantly different between salinity 
3 and 7%, 3 and 6%, 4 and 7%, 4 and 6%, 3 and 2%, 3 and 5%, 4 and 2%, 4 and 5%, 
5 and 7%, 2 and 7% (Holm-Sidak Method, p < 0.05) but no significant difference was 
observed between 5 and 6%, 2 and 6%, 3 and 4%, 6 and 7%, 5 and 2% (Holm-Sidak 
Method, p > 0.05) (Figure 4).  
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Figure 4. Lipid yield (g L-1), lipid content (% AFDW), lipid content per cell (ng)  

and lipid productivity (g L-1 d-1) of Nannochloropsis sp. UHO3 at increasing salinity. 
Values represent mean±standard deviation (n = 3). 

 
Discussion. The ability of a marine microalgal species to tolerate wide range of high 
salinity is one of the important criteria for successful microalgal cultivation in outdoor 
open pond system. Therefore, it is important to determine the salinity tolerance of any 
microalgal species intending to be mass produced in outdoor open pond system for any 
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commercial application. In this study, we tested to grow the newly isolated marine 
Nannochloropsis sp. UHO3 at a wide range of salinity and found that the alga can grow 
very well over a wide range of high salinity tested from 2 to 7% NaCl which is up to more 
than two fold of the seawater salinity. This is possibly the highest salinity tolerance 
reported in the literature for the genus Nannochloropsis (Eustigmatophyceae, 
Monodopsidaceae). Most of the similar studies on the effect of salinity on the growth of 
Nannochloropsis examined small range of salinity from brackish to seawater salinity (< 
3.5% NaCl) ignoring the higher salinity values above seawater salinity. For example, a 
study done by Gu et al (2012a) reported the optimum salinity for the growth of N. 
oculata under nutrient-replete conditions was 25‰ (2.5%), and it grew better at 35‰ 
(3.5%) under nutrient-deplete conditions. Renaud & Parry (1994) and Wilkerson (1998) 
reported the optimum salinity for the growth of the N. oculata was 22 to 25 g L-1 (2.2 to 
2.5% NaCl). Bartley et al (2015) observed the salinity range for N. salina growth was 
14.5-45.5 PSU. The optimum salinity for the growth of Nannochloropsis was 10‰ or 1% 
NaCl (Fakhri et al 2015). The variation of the salinity tolerance of Nannochloropsis sp. is 
species specific (Richmond 1986) and it is also related to origin (Banerjee et al 2011).   

The highest SGR of the Nannochloropsis sp. UHO3 (0.779±0.02 d-1) was achieved 
when rising the salinity from 2 to 3% NaCl and the lowest (0.455±0.02 d-1) was obtained 
when increasing the salinity from 6 to 7% salinity. A decrease in the algal growth at 
increasing salinity would be due to energy use for maintaining the turgor pressure 
resulted in a decrease in productivity or reduction in growth (Kirst 1989) and also due to 
lower photosynthetic rate (Hart et al 1991). The SGR reported in this study was 
comparable with other studies. For example, the maximum growth rate of the 
Nannochloropsis salina under optimum growing condition in the laboratory was 0.030 h-1 
or 0.72 d-1 corresponding to a doubling time of 23 h (Boussiba et al 1987). The highest 
SGR of Nannochloropsis oculata was about 0.282±0.017 d-1 obtained at salinity 35 g L-1 
or 3.5% NaCl (Gu et al 2012b). A study done by Cho et al (2007) reported the highest 
SGR of the N. oculatawas 0.46 d-1 obtained at salinity 10‰ or 1% NaCl. Pal et al (2011) 
reported the highest SGR of the Nannochloropsis sp. (0.81 d-1) was achieved at salinity 
27 g L-1 (2.7% NaCl) and the lowest SGR (0.55 d-1) was obtained at salinity 40 g L-1 
(4.0% NaCl). According to Garcia et al (2007), variation in growth rates of microalgae 
are more strain specific than species specific and differ between geographycal location 
(de Boer et al 2005). The optimum salinity for the growth of the Nannochloropsis sp. 
UHO3 (3% NaCl) is very close to the initial salinity condition from which the strain was 
collected (3.2% NaCl). 

This study tested the growth of the Nannochloropsis sp. at wide range of high 
salinity  up to two times of the seawater salinity (2-7% NaCl). The main reason is that 
the alga is going to be mass produced in outdoors for any potential applications using 
seawater based medium. If the seawater is used then the salinity of the culture media 
will increase over time (Borowitzka 2013b) and therefore with capability of the alga to 
tolerate wide range of high salinity, the reliable culture could possibly be maintained for 
long periods. In addition, microalgae growing in hypersaline media are less prone to 
contamination by other microrganisms including other microalgal species, protozoas and 
bacteria as not many organisms can tolerate high salt concentration (Mutanda et al 
2011; Indrayani et al 2018).   

Salinity does not only affect the growth of microalgae but also affects biochemical 
composition of microalgae including lipid. This study is particularly focused on the effect 
of the salinity on the growth and lipid productivity of the Nannochloropsis sp. UHO3 due 
to the fact that genus Nannochloropsis is one of the most studied microalgae genera 
owing to its ability to synthesize not only neutral lipids for biodiesel production but also 
EPA for functional food (Hoffmann et al 2010; Ma et al 2014; Ma et al 2016; Hulatt et al 
2017). Neutral lipids are the dominant storage compounds in Nannochloropsis under 
nitrogen-deprivation condition whereas under nutrient-sufficient conditions, the 
biosynthesis of polar lipids is preferred (Ma et al 2016). Hu et al (2008) pointed out that 
lipids both polar membrane lipids and neutral lipids are important structural and 
functional parts of microalgae in which under favourable growth condition, microalgae 
synthesize membrane lipids of about 5-20% of the cell dry weight; under unfavourable 
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conditions, more neutral lipids in the form of TAGs are synthesized of about 20-50% of 
dry weight. In this study, we found that the highest lipid content (25.29%AFDW) and 
lipid productivity (0.172 g L-1d-1) of the Nannochloropsis sp. UHO3 were obtained at 3% 
salinity although no significantly difference at 4% salinity. The highest lipid yield of the 
alga coincides well with the highest growth rate achieved at salinity 3% NaCl resulted in 
the highest lipid productivity. It is interesting to note that the intracelullar lipid 
accumulation of the alga was relatively higher at the lowest salinity (2% NaCl) although 
there was no statistically significant difference between other salinities. Higher 
intracelluar lipid content of the alga at lower salinity could be due to the increase 
accumulation of neutral lipids as energy-rich stotage products produced under 
unfavourable salinity condition for the growth of the alga. Therefore, the optimum  
salinity for higher growth rate and lipid productivity of the Nannochloropsis sp. UHO3 is 
at salinity 3-4% NaCl.   

The lipid content of the Nannochloropsis found in this study is comparable with 
other studies. For example, N. gaditana strains can accumulate 20% of lipid (wild type) 
and 40-45% (mutant type) under nutrient-replete conditions (Ajjawi et al 2017). San 
Pedro et al (2014) studied outdoor pilot scale production of Nannochloropsis gaditana in 
tubular photobioreactors and found that the species produced maximum lipid productivity 
of about 0.110 g L-1 d-1. Dianursanti et al (2018) reported the highest lipid content of N. 
oculata (20.3% dry weight) was obtained after the addition 25 ppm HCO3-. The lipid 
content of N. salina ranged from 22 to 26% AFDW (Boussiba et al 1987). 

The results of this study suggests that the newly isolated Nannochloropsis sp. 
UHO3 is a potential microalgal species for biodiesel feedstock due to its high growth rate, 
high lipid content  and lipid productivity. This is in line with a study done by Doan et al 
(2011) who conducted a comprehensive high-throughput screening study. Out of the 96 
strains screened, they recomended Nannochloropsis strains as the best feedstock for 
biodiesel due to its high lipid content ranging from 39.4 to 44.9% of dry weight biomass.  
Ma et al (2014) also suggest the N. oceanica IMET1 as an excellent strain for lipid 
production due to its high lipid productivity of 158 mg L-1 d-1. The ideal microalgae as an 
alternative biodiesel source must have high growth rate, lipid content and lipid 
productivity (Griffiths & Harrison 2009; Gong & Jiang 2011). In addition, microalgal 
species with a wide salinity tolerance is preferred for outdoors cultivation to obtain 
reliable cultures for long period (Indrayani 2017; Indrayani et al 2019, 2020).  
Microalgae with these characteristics will greatly reduce the production cost of biodiesel 
(Ruangsomboon et al 2013). 

 
Conclusions. The microalga strain Nannochloropsis sp.UHO3 has a wide range of salinity 
tolerance from 2% to 7% NaCl concentration. The algal strain can yield high lipid 
production at salinity 3-4% NaCl. On the basis of its growth characteristics, lipid content 
and lipid productivity, this strain seems to be suitable for biodiesel feedstock. Research 
on this strain is continuing to determine other limits to growth factors to further enhance 
biomass, lipid productivities and fatty acids compositions for biodiesel and high value 
product production (i.e DHA and EPA contents) and also to determine its reliability for 
mass cultivation in outdoor raceway ponds. 
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