Growth performance and sex ratio of *Channa striata* through immersion and bioencapsulation of Artemia with recombinant growth hormone

1Azkha D. Vahira, 2Agung H. Riadin, 1Munti Sarida, 1Deny S. C. Utomo, 2,3Wawan A. Setiawan

1 Study Program of Aquaculture, Fisheries and Marine Science Department, Faculty of Agriculture, University of Lampung, Lampung, Indonesia; 2 Department of Biology, Faculty of Mathematics and Science, Lampung University, Lampung, Indonesia; 3 Technical Services Unit Integrated Laboratory and Central Innovation Technology, Lampung University, Lampung, Indonesia. Corresponding author: M. Sarida, munti.sarida@fp.unila.ac.id

Abstract. The aim of this study was to evaluate the effect of different doses of recombinant giant grouper (*Epinephelus lanceolatus*) growth hormone (r-EIGH) on both growth performance and sex ratio of *Channa striata* juveniles. The r-EIGH treatments were conducted in two experiments, each using a specific method. In the first experiment, using immersion method, four kinds of treatments were used: one was without salinity shocked and no hormone treatments (negative control); and the others were with salinity shocked and hormone treatments (0 mg L\(^{-1}\) (positive control), 2 mg L\(^{-1}\) (P1), 20 mg L\(^{-1}\) (P2)). In the second experiment, using Artemia bioencapsulation method, five kinds of treatments were used: one was *Artemia* without r-EIGH, BSA and NaCl (negative control), and the others were *Artemia* with r-EIGH, BSA and NaCl (0 mg L\(^{-1}\) (positive control), 2 mg L\(^{-1}\) (P1), 4 mg L\(^{-1}\) (P2), and 6 mg L\(^{-1}\) (P3)). All treatments in both experiments were replicated three times. The results showed that the r-EIGH increases specific growth rate, absolute body weight and length, while it decreases feed conversion ratio and it does not affect sex ratios. Furthermore, the ratio of female to male was 1:1.5 at five months old.

Key Words: *Channa striata*, juvenile, recombinant growth hormone, specific growth rate, sex ratio.

Introduction. *Channa striata* (striped snakehead) is one of carnivore freshwater fish of Channidae family and ordo Perciformes, an original species in Asia and Africa region (Nakkrasae et al 2015) which has high economic value because its price is relatively high at about IDR 40,000-70,000 kg\(^{-1}\) (Directorate General of Strengthening Competitiveness of Fisheries and Marine Products 2019). It occupies the top ten species of national household preference with 2.40% consumption level per year in 2013 (Directorate General of Domestic Trade 2013), has firm and tasty flesh (Khanna 1978; Muntaziana et al 2013), and has a rich source of albumin 63-107 mg g\(^{-1}\) from its body weight (Chasanah et al 2015). Therefore, this fish is one of potential commodities that need to be studied intensively regarding its production technology.

The main problem of current production technology is decreasing growth rate after three months old, from 1.3-3.0 to 0.3-0.9 mm day\(^{-1}\) (Murugesan 1978; Boonyaratpalin et al 1985; Courtenay & Williams 2004; Muntaziana et al 2013). Besides, the feed conversion ratio (FCR) was high (Hien et al 2016) and it takes more than 13.5 months to reach market-size (Murugesan 1978) and two years to reach the length of 30 cm, where it sexually matures (Talwar & Jhingran 1992). Then, particular studies to increase growth rate, improve the FCR, and observe the sex ratio are needed.

Growth rate in fish can be increased through applying recombinant growth hormone (rGH), which is derivative of growth hormone (GH). Previously, rGH was produced from the human body tissues with the help of microorganism (Ayyar 2011).
However, due to the limited resources, now rGH is produced from fish pituitary gland, whose function resembles growth hormone: to increase growth, feed efficiency, and gonadal development processes (Berishvili et al. 2006; Funkenstein 2006; Linan-Cabello et al. 2013). rGH can increase growth rate of fish up to 11 times faster than normal fish in Oncorhynchus spp.; 3.7 times in Cyprinus carpio; 2 times in Oreochromis niloticus (Alimuddin et al. 2003).

In the last three decades, intensive uses of rGH in cultivated fishes have been done both on consumption and ornamental purposes. According to Alimuddin et al. (2010) rGH produced from Epinephelus lanceolatus (r-EIGH), from C. carpio (r-CcGH), and from Osphronemus gouramy (r-OgGH) has an ability to induce the best growth in O. niloticus by 20.94%, by 18.09% and by 16.99%, respectively. Use of r-EIGH through immersion method has been applied in some species likes Anguilla bicolor (Handoyo et al. 2012), Litopenaeus vannamei (Saputra et al. 2015), and Chromobotia macracanthus (Permana et al. 2018), whereas the use of r-EIGH through the Artemia bioencapsulation method had not existed yet. In advance, Artemia bioencapsulation has been applied using n-3 HUFA to Farfantepenaeus paulensis (Mutti et al. 2017), using essential fatty acids (EFA) to Acipenser gueldenstaedtii (Kamaszewski et al. 2014), and using lipid to Lebbeus groenlandicus (Park et al. 2016). So far, the use of r-EIGH through immersion and or Artemia bioencapsulation to C. striata to increase growth rate had not been studied.

It is also known that the growth and gonadal differentiation occurred together in the early life phase of fish. Previous studies showed that there was unbalanced sex ratio and the reproductive pattern was hermaphrodite protogyini in the C. striata adults caught from nature (Irmanawati et al. 2017; Musdalifah 2018). The control of sex ratio is a valuable biotechnological approach for the optimization of the quality of fish products according to particular commercial needs. So far, sex ratio of C. striata had not been studied in the juvenile phase. The aim of this study was to examine the effect of different doses of r-EIGH on both growth performance and sex ratio of C. striata juveniles.

Material and Method

Experimental design. The research was conducted for five months from January to June 2020. Two separate experiments were conducted simultaneously in the Aquaculture Laboratory of Lampung University. Both experiments used an immersion and bioencapsulation of r-EIGH for larvae, which were conducted for 42 days, then the juvenile were maintained without treatments for 56 days. After that, for observing sex ratio the fish were maintained until five months old. The r-EIGH was commercially purchased from The Hall for Development of Freshwater Aquaculture (BBPBAT) Sukabumi, Indonesia. In both experiments, two weeks old C. striata larvae were obtained at hatchery of Lampung State Polytechnic with initial body weight and body length are 0.08±0.04 g and 20.48±3.80 mm, respectively. Approximately 100 larvae were stocked in 50-L tanks (60 x 40 x 40 cm3). The immersion and bioencapsulation methods experiments used 12 and 15 tanks, respectively. All larvae were fed with Artemia sp. and acclimatized to the experimental condition for 4 days. Larvae were reared under natural photoperiod, and dissolved oxygen level (3.20-5.82 mg L$^{-1}$) of water were monitored routinely and maintained within standard limits. The water exchange was performed up to a third removal of tanks water every week and also tanks were siphoned in the morning and evening every day. After larvae reached 14 days old, the juveniles were fed with pellet (crude protein: 37%) three times a day at 08.00, 12.00 and 16.00 West Indonesia Time (zone) to apparent satiation. But the day before the treatment, the fish were not siphoned as well as not fed to maintain their metabolism.

In the first experiments, larvae were treated by immersion method with four treatments and three replications: without salinity shocked and no hormone treatments (0 mg L$^{-1}$ (negative control, K-)), with salinity shocked and hormone treatments (0 mg L$^{-1}$ (positive control, K+)), 2 mg L$^{-1}$ (P1), and 20 mg L$^{-1}$ (P2)). In K+, P1 and P2 treatments, larvae were treated first with salinity shocked at 25 ppt for two minutes then immersed...
with different doses of r-ELGH in 0.01% Bovine Serum Albumin (BSA) and 0.9% NaCl L⁻¹. Further, larvae from each treatment were moved into plastic bags filled with oxygen for 60 minutes, then were moved back to the rearing aquarium. This immersion was conducted once a week for six weeks.

In the second experiment, larvae were treated by bioencapsulations of Artemia method with five doses of r-ELGH and three replications: without salinity shocked and no hormone treatments (0 mg L⁻¹ (negative control, K⁻)), with salinity shocked and hormone treatments (0 mg L⁻¹ (positive control, K⁺), 2 mg L⁻¹ (P1), 4 mg L⁻¹ (P2), and 6 mg L⁻¹ (P3)). One hundred milliliter of Artemia nauplii were obtained by hatching 3.5 g of cyste Artemia, then it divided into five cup each 20 mL. For K⁻ treatment, Artemia nauplii were mixed with 980 mL of water in the dark bottle. On the other hand, for other treatments each 20 mL of Artemia nauplii were mixed with 80 mL of mixed solutions containing different doses of r-ELGH, 0.01% BSA, 0.9% NaCl, and 900 mL of water in each dark bottle. The process of bioencapsulatin took one hour. After that Artemia nauplii were harvested, washed and divided into 3 replications for each treatment (33 mL assumption each aquarium) to be given to larvae. Artemia bioencapsulation of r-ELGH was given twice a week in the morning for six weeks.

After being treated with immersion and bioencapsulation, fish were reared without hormones for 56 days and fed with Artemia and tubifex four times a day until three weeks old, then fed with pellet (crude protein: 37%) three times a day at 08.00, 12.00 and 16.00 WIB by satiation feeding.

Fish sampling, growth and sex ratios parameters. At the end of the experiment fish were sampled for analysing growth performance (n = 20 per group) by measuring standard body length and weight of each fish, and sex ratios (n = 10 per group). To determine the specific growth rate (SGR) and feed conversion ratio (FCR), they were calculated by the equations:

\[
\text{SGR} \text{ (% day}^{-1}) = \left[\sqrt{\frac{\text{time} \times \text{final weight of fish} + \text{initial weight of fish}}{\text{initial weight of fish}}} - 1\right] \times 100
\]

\[
\text{FCR} = \frac{\text{weight of feed eaten}}{\text{final weight of live fish - initial weight of fish + weight of dead fish}}
\]

Then, the sex ratios was sampled by histology analysis. For this analysis, fish were anesthetized in 1% of clove oil, fixed in 10% formalin fixative for 24 hours, and stored in 70% etanol. Briefly, specimens were then dehydrated, embedded in ParaplastPlus, cut in 6 µ thick serial sections, and stained with hematoxylin-eosin. Because this was in pioneer project, histological preparations were examined under a microscope to identify females using the presence of primary oocytes, perinucleolar oocytes, and ovarian cavity, while males with the presence of blood vessel and spermatozoa as criteria (Haugen et al 2012; Moallem et al 2015; Chen et al 2017) (Figure 1).

![Figure 1. Five months old of snakehead gonad. (a) Female gonad, length of 68 mm, weight 2.20 g, complemented by primary oocytes (PO), perinucleolar oocytes (PnO), and ovary cavity (OC); (b) Male gonad, length of 78 mm, weight 4.16 g, complemented by spermatozoa (Sg), spermatozoa (Sz) and blood vessel (BV) (The magnification of a and b are 10x and 40x magnification, scale bar 50 µm and 20 µm, respectively).](image-url)
Statistical analysis. Data of growth performance and FCR were analyzed using analysis of variance (ANOVA), the data were further analyzed with Duncan’s Multiple Range Tests (DMRT), while the sex ratio was analyzed using z test proportion of two samples (α = 5%).

Results. The results in this study indicate that the administration of r-EI GH had an effect on growth performance and the FCR of *C. striata*, both on immersed and bioencapsulation methods. This can be shown based on the growth parameters observed during 98 days of maintenance (Table 1 and Table 2). The first experiment with further analysis of Duncan's test found that SGR, absolute body weight and length between P1, P2, and K+ treatments were not significantly different. However, they were significantly different to K- (p < 0.05). For the FCR, it was found that the hormone treatments had a lower value than the control treatment (p < 0.05).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>K-</th>
<th>K+</th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR (% day⁻¹)</td>
<td>3.57±0.05b</td>
<td>3.66±0.04ab</td>
<td>3.74±0.09a</td>
<td>3.75±0.05a</td>
</tr>
<tr>
<td>ABW (g)</td>
<td>2.42±0.12b</td>
<td>2.64±0.10a</td>
<td>2.84±0.25a</td>
<td>2.86±0.14a</td>
</tr>
<tr>
<td>ABL (mm)</td>
<td>50.64±2.05b</td>
<td>53.80±0.80ab</td>
<td>55.88±2.89a</td>
<td>54.90±1.12a</td>
</tr>
<tr>
<td>FCR</td>
<td>1.40±0.09a</td>
<td>1.44±0.09a</td>
<td>1.18±0.15b</td>
<td>1.16±0.10b</td>
</tr>
<tr>
<td>Female:male ratio</td>
<td>16:23 (1:1.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Different superscript in the same column indicates significant difference between treatments (p < 0.05) (DMRT).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>K-</th>
<th>K+</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR (% day⁻¹)</td>
<td>3.77±0.10c</td>
<td>3.75±0.16bc</td>
<td>4.13±0.04a</td>
<td>3.93±0.02b</td>
<td>3.99±0.14ab</td>
</tr>
<tr>
<td>ABW (g)</td>
<td>2.95±0.29a</td>
<td>2.89±0.47bc</td>
<td>4.12±0.14a</td>
<td>3.42±0.07b</td>
<td>3.65±0.47ab</td>
</tr>
<tr>
<td>ABL (mm)</td>
<td>48.00±0.17b</td>
<td>46.70±0.78ab</td>
<td>54.49±0.13a</td>
<td>49.58±0.05b</td>
<td>51.47±0.38ab</td>
</tr>
<tr>
<td>FCR</td>
<td>1.67±0.12a</td>
<td>1.63±0.19ab</td>
<td>1.15±0.03c</td>
<td>1.30±0.06b</td>
<td>1.35±0.15b</td>
</tr>
<tr>
<td>Female:male ratio</td>
<td>15:22 (1:1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Different superscript in the same column indicates significant difference between treatments (p < 0.05) (DMRT).

The second experiment, based on Duncan's tests showed that the effect of r-EI GH addition through Artemia bioencapsulation to the SGR and ABW and ABL were the same in P1 and P3 treatments, however P1 were significantly different to K-, K+ and P2 (p < 0.05). For the FCR, it was found that the hormone treatments (P1 and P2) had a lower value than the control treatment (K- and K+) and highest dose (P3) (p < 0.05). Interestingly, experiment of r-EI GH addition with the Artemia bioencapsulation showed the growth rate of *C. striata* 10.42% higher and the weight gain 43.97% higher than the immersion.

Meanwhile, sex ratio of *C. striata* statistically on z test proportion of two samples, showed that ratio between both of methods were same, where the r-EI GH did not affect sex ratio of *C. striata* juvenile. Sex ratio of female:male to five months old juvenile on both methods were 1:1.5 (Table 1 and Table 2).
Discussion. In this study, growth performance and sex ratios analysis were performed in both immersion and bioencapsulation of Artemia with r-EIGH on C. striata larvae to clarify the effect of this recombinant hormone on growth performance and sex ratios. The results of this study showed that the r-EIGH increases SGR, ABW and ABL of C. striata juveniles, while it decreases FCR and it does not affect sex ratios. The most effective dose from both experiments was 2 mg L⁻¹. It is generally known that the improper dose of hormone causes negative feedback. This is due to the biphasic characteristic of hormone (Caraty et al 1989; Debnath 2010) which gives a negative response of growth if the doses given is too low or too high.

Besides that, the BSA used in the treatment of both experiments was estimated to affect the growth performance by its albumin content. In advance, it is known that C. striata contains high albumin levels in their bodies. It is assumed that serum albumin contained in BSA solution increases albumin levels in C. striata body. BSA is a biotechnology application in the form of protein transport (albumin) which is osmotically active to support cell growth through binding and transporting the body metabolites such as fatty acid, hormone, and growth factor (Andreeva 2010; Gaharwar et al 2013; Susilowati et al 2015), so that nutrients can be absorbed more optimally and further can be used for growth purposes.

Then, there is a possible mechanism that r-EIGH affects on growth performance of C. striata juveniles. It can be realized from the growth rate of fish with hormone treatments 5.04-10.20% higher than fish without hormone treatments. In the immersion method, it is suspected that the mechanism for r-EIGH entry into the body of C. striata is through the gills and epidermal. According to Habibi et al (2003) epidermal layer of Oncorhynchus mykiss is able to absorb BSA solution as a solvent for r-EIGH. The BSA particle size is around 67 kDA (Andreeva 2010) bigger than 22 kDA particle size of r-EIGH (Arsene et al 2014). Thus, r-EIGH is also able to be absorbed into C. striata body. r-EIGH which has been absorbed subsequently with the help of BSA will spread through blood plasma and the cell fluid of C. striata body. Whereas, in the bioencapsulation method, r-EIGH will enter through Artemia that is non-selective filter feeder (Dhont & Dierckens 2013; Riisgard et al 2015), then Artemia is consumed by fish and will be involved in C. striata body metabolism, so that r-EIGH can be utilized by the body for growth.

Based on the results of the experiments, Artemia bioencapsulation method with r-EIGH gives better growth performance than immersion method. This is due to the mechanism of the r-EIGH in bioencapsulation method which enter directly into the intestine. This can increase the absorption of nutrients to be circulated throughout the body (Chen et al 2019). Meanwhile, in immersion method it was estimated that not all of r-EIGH enter the body, but only a part that is absorbed by the fish's epidermal. Even more, the immersion method is more risky of being affected by stress which can inhibit growth metabolism (Handoyo et al 2012). Therefore, r-EIGH utilization through bioencapsulation method gives better growth results than immersion method. In its mechanism, rGH worked directly and indirectly. For indirectly, rGH involves IGF-1 whereas the IGF-1 utilizes towards the target organ. IGF-1 stimulates growth hormone produced by pituitary gland which increases the growth of body tissues (Yamaguchi et al 2006) and interacting with steroid hormones to trigger the spermatogenesis and oocytes proliferation and maturation (Reinecke 2010).

Based on the results of ABW, it was found that r-EIGH is able to increase C. striata growth 17.35-42.50% than control fish. The same as to A. bicolor increases 37.40% (Alimuddin et al 2014) and L. vannamei 37.77% (Subaidah et al 2012). Based on the increase in length and weight, the exponential growth rate is obtained when the C. striata is less than three months old, however after that, C. striata growth slows down (Murugesan 1978; Boonjaratpalin et al 1985; Courtenay & Williams 2004; Muntaziana et al 2013). SGR on C. striata decreased from 4.30-5.25% day⁻¹ (2 months), 4.86-4.92% day⁻¹ (3 months), 3.57-3.77% day⁻¹ (4 months) to 2.83-3.16% day⁻¹ (5 months). Therefore, booster of r-EIGH could be given before three months old or during their exponential growth phase to increase C. striata growth.
The addition of hormone also has a significant effect on FCR, so that r-ElGH is considered to be able to increase the feeding efficiency of C. striata. Low FCR observed in larvae treated by r-GH might be caused by the increase of digestion and absorption processes of feed nutrient, through protein and lipid metabolism (Kobayashi et al 2007; Lubis et al 2019). Therefore, fish with hormone treatments has more ability to digest food, absorb nutrients, and convert food proportions to form fish body composition, thus feed can be used for good growth (Kling et al 2012). The role of r-ElGH in improving the feed efficiency is also reported in Anguilla bicolor bicolor (Alimuddin et al 2014) and Cromileptes altivelis (Antoro et al 2015).

Sex ratios observed in both methods are the same. It indicates that both experiments do not affect the process of gonadal development. Also, it is assumed that growth hormone through IGF-1 does not affect the gonadal development of C. striata juvenile, where female and male gonadal development in hormone treatments did not significantly differ from it in control treatment.

Conclusions. Artemia bioencapsulation method with r-ElGH increases specific growth rate and absolute body weight of C. striata juveniles, higher than immersion method. Furthermore, the ratio of female to male in C. striata juveniles at five months old from both methods was 1:1.5. Further studies are on histological differentiation as effect of a recombinant growth hormone instead of growth performance. Also, the effect of environmental factor on growth performance and histological sex differentiation in snakehead needs to be studied.

Acknowledgements. This project was funded by LPPM Lampung University. Also, thanks to Mrs. Dwi Mulyasih, M.Si for helping during the technical process of this research.

References

Chen W., Liu L., Ge W., 2017 Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-mullerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio. Biology of Reproduction 96(2):401-413.

Directorate General of Strengthening Competitiveness of Fisheries and Marine Products, 2019 [Consumer level fish prices]. Indonesia Ministry of Marine Affairs and Fisheries, Jakarta, 8 pp. [in Indonesian]

Irmawati, Tresnati J., Nadiarti, Yunus B., Utami M. S., 2017 [The characterisation of striped snakehead (Channa sp.) from Bantimurung River, Maros Recency, South of Sulawesi]. Proceeding of National Simphosium Marine and Fisheries IV, Fisheries and Marine Faculty, Hasanuddin University 1:24-38. [in Indonesian]

Musdalifah, 2018 [Sex ratio of Channa striatus, Bloch 1973 in Bojo River, Barru South of Sulawesi]. Undergraduate Reports, Hasanuddin University, 60 pp. [in Indonesian]

Received: 20 August 2020. Accepted: 05 October 2020. Published online: 29 October 2020.

Authors:
Azkha Dwi Vahira, Study Program of Aquaculture, Fisheries and Marine Science Department, Faculty of Agriculture, University of Lampung, Bandar Lampung, Indonesia, e-mail: azkhadwivahira@gmail.com

Agung Harits Riadin, Study Program of Aquaculture, Fisheries and Marine Science Department, Faculty of Agriculture, University of Lampung, Bandar Lampung, Indonesia, e-mail: agungharits@gmail.com

Munti Sarida, Fisheries and Marine Science Department, Faculty of Agriculture, University of Lampung, Bandar Lampung, Indonesia, e-mail: munti.sarida@fp.unila.ac.id

Deny Sapto Chondro Utomo, Fisheries and Marine Science Department, Faculty of Agriculture, University of Lampung, Bandar Lampung, Indonesia, e-mail: demin_bdpers39@yahoo.com

Wawan Abdullah Setiawan, Department of Biology, Faculty of Mathematics and Science, Lampung University, Lampung, Indonesia; Technical Services Unit Integrated Laboratory and Central Innovation Technology, Lampung University, Lampung, Indonesia, e-mail: wawan.a.setiawan@gmail.com

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

How to cite this article: