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Abstract. Four carbon sources of different complexity (glucose, starch, molasses and cellulose) were 
evaluated for their effects on the integrity of biofloc system. The experiment lasted for 30 days where 
12 circular plastic tanks (55 L) were used as experimental units for different treatments in triplicate. 
Each tank was stocked with 10 Nile tilapia fingerlings with average body weight of 9.14±0.06 g 
corresponding to the densities of 1.66 kg m-3 and were aerated by air stones. Dissolved oxygen (DO), 
pH, temperature, total ammonia-nitrogen (TAN), nitrite, water alkalinity, total suspended solids (TSS) 
and floc volume values in the rearing tanks were within normal limits for fish culture. Cellulose 
treatment showed significantly the highest average final body weight and the best feed conversion 
ratio (FCR). Complexity of carbon sources had no effect on the fatty acids (FA) profile. Cellulose 
recorded the lowest zooplankton count with no significant differences among treatments. Rotifers 
dominated the zooplankton over the experiment time with species identified like Philodina and Lecane 
bulla species. It could be concluded that cellulose may be considered as efficient carbon source in 
terms of water parameters stability and fish growth performance under biofloc system conditions. 
Key Words: biofloc carbon sources, molasses, cellulose, starch, glucose. 

 
 
Introduction. Fish has been considered as one of the main concerns globally to 
overcome world hunger and provide a sustainable source of protein for the world 
growing population (Godfray et al 2010). To accomplish hunger elimination in the near 
future, intensifying aquaculture production is a must (FAO 2014). Conventional 
farming applies high water exchange rate which causes environment pollution due to 
the aquaculture effluent and provides unsustainable fish product under condition of 
world water shortage (Tidwell 2012). New techniques were introduced to avoid all the 
disadvantages of conventional aquaculture and even made great advantages (Crab 
2010). 

Biofloc technology is one of the eco-friendly systems which includes the 
activation of heterotrophic bacteria via carbon source in the aquaculture ponds. In 
presence of carbon nitrogen ratio starting from 10:1 the bacteria consume nitrogen 
and increase the bacterial population (Avnimelech 1999). Biofloc system has a major 
advantage of being a nearly zero water exchange system and applying no stress on 
fish due to water exchange (Crab et al 2007; De Schryver et al 2008; Crab et al 2009; 
Crab et al 2012; Nevejan et al 2018). Flocs of bacteria and zooplankton organisms 
together with feed residuals are considered as a secondary feed source with high 
protein content. In addition, the biofloc contributes to the overall protein percentage 
delivered in the feed which lowers the cost of the feed formula (Burford et al 2004; 
Wasielesky et al 2006; Hatem et al 2013; Wasielesky et al 2013; Khalil et al 2016; 
Zidan et al 2017; El-Husseiny et al 2017). Many researches discussed the use of 
different carbon sources and their effect on water quality and performance of both fish 
and shrimp culture in biofloc system. Black tiger shrimp (Penaeus monodon) exhibited 
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better growth performance and immune responses in biofloc system supplemented 
with rice flour compared to beet molasses (Kumar et al 2017). Highly degradable 
carbon sources as molasses and dextrose had better effect on biofloc water quality 
compared to low degradable ones as rice bran in both nursery and grow out phases of 
Litopenaeus vannamei (Serra et al 2015). Biofloc grown on glycerol inoculated with 
Bacillus spores showed better protein content than the one grown in glycerol and 
glucose treatments and resulted in better survival rates and biochemical analysis of 
Macrobrachium rosenbergii (Crab et al 2010). Wang et al (2016) found that a 
combination of different carbon sources (molasses 60% + corn flour 20% + wheat 
bran 20%) achieved better enzymatic activity and growth performance in L. vannamei 
juveniles under biofloc system. Despite that sweet potato resulted in lower total 
ammonia-nitrogen (TAN), NO2, NO3 in a study of Caipang et al (2015), a better feed 
conversion ratio (FCR) was noticed for tilapia reared under wheat flour treatment. 
Different carbon sources; molasses, sugar or cassava starch had no influence on tilapia 
growth performance cultured under biofloc systems. However, molasses and sugar 
promoted better microbial floc formation (Silva et al 2017).  

More research is required to clarify the effect of carbon sources of different 
complexity on zooplankton community, fatty acid profile and tilapia performance. 
Therefore, the current study aimed to investigate the effect of simple carbon sources 
(glucose, starch and molasses) versus more complex ones (cellulose) on water quality 
analysis, zooplankton communities and the fatty acid profile of microbial flocs. 

 
Material and Method 
 
Fish and experimental conditions. The present study was carried out  in October- 
November 2014 at the Fish Nutrition Laboratory (FNL), Department of Animal Production, 
Faculty of Agriculture, Cairo University, Egypt. Nile tilapia (Oreochromis niloticus) 
fingerlings were obtained from a commercial hatchery located in Kafr El-Sheikh 
Governorate, Egypt, and were adapted to the experimental conditions. After acclimation 
period, 120 Nile tilapia fingerlings with an average body weight of 9.14±0.06 g were 
randomly distributed. Twelve circular plastic tanks (55 L) were used as an experimental 
unit for different treatment in triplicate representing four treatments. Each tank was 
stocked with 10 fish corresponding to the density of 1.66 kg m-3 and were supplied with 
well water and aerated with air stones for the experiment duration of 30 days. 
 
Experimental design. The experimental design was completely randomized, where four 
carbon sources; glucose, starch, molasses and cellulose were examined for their effect on 
water quality, zooplankton communities and the fatty acid profile of biofloc. Fish were fed 
according to their body weight 4% twice daily (9:00 h and 17:00 h) on a basal diet (302 
g kg-1 crude protein and 4560.70 Kcal kg-1 gross energy) (Table 1). 
 
Water quality. Dissolved oxygen (DO), water temperature and pH were measured daily 
using Lovibond® Tintometer® water testing device and Milwaukee ph600 digital pocket 
pen. Total suspended solids, ammonia nitrogen (NH3-N), nitrite (NO2-N) and nitrate 
(NO3-N) values were determined weekly using Lovibond® Multidirect device. Biofloc 
volume was measured weekly after 15-20 minutes of sedimentation using Imhoff cone 
(Avnimelech & Kochba 2009). Alkalinity was measured at the end of the experiment by 
titration with sulphuric acid (0.02%) to sample solution (50 mL) till the pH value reaches 
4.5 (Boyd & Tucker 1992).  
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Table 1 
Formulation and proximate composition of the experimental diet (g kg-1 diet) 

 
Ingredients Diet formula 
Fish meala 170 

Soybean mealb 280 
Wheat branc 244 

Cornd 220 
Soy oile 60 
Premixf 20 

Vitamin Cg 0.5 
Carboxy methyl celluloseg 5 

BHTg 0.5 
Total (g) 1000 

Proximate composition  
Dry matter 945.9 

Crude protein 302 
Crude lipid 89.1 
Crude ash 71 

Total carbohydrateh 483.8 
Gross energy  kcal kg-1i 4560.7 

Mineral  
Calcium (%) 1.38 
Phosphor (%) 0.73 
Sodium (%) 0.3 

Potassium (%) 0.83 
Magnesium (%) 0.19 

Selenium (mg kg-1) 31.04 
a Imported fish meal (70% CP); b Soy Factory, Food Technology Research Institute, Ministry of Agriculture, Giza, 
Egypt; c Commercial food-grade; d Imported yellow corn from Argentina; e Commercial food-grade; f Provides per kg of 
diet: retinyl acetate, 3,000 IU; cholecalciferol, 2,400 IU; all-rac-α-tocopheryl acetate, 60 IU; menadione sodium 
bisulfite, 1.2 mg; ascorbic acid monophosphate (49% ascorbic acid), 120 mg; cyanocobalamine, 0.024 mg; d-biotin, 
0.168 mg; choline chloride, 1,200 mg; folic acid, 1.2 mg; niacin, 12 mg; d-calcium pantothenate, 26 mg; pyridoxine. 
HCl, 6 mg; riboflavin, 7.2 mg; thiamin. HCl, 1.2 mg; sodium chloride (NaCl, 39% Na, 61% Cl), 3,077 mg; ferrous 
sulfate (FeSO4·7H2O, 20% Fe), 65 mg; manganese sulfate (MnSO4, 36% Mn), 89 mg; zinc sulfate (ZnSO4·7H2O, 40% 
Zn), 150 mg; copper sulfate (CuSO4.5H2O, 25% Cu), 28 mg; potassium iodide (KI, 24% K, 76% I), 11 mg; Celite 
AW521 (acid-washed diatomaceous earth silica), 1,000 mg Agri-Vet Co., Cairo, Egypt; g Algomhuria Pharmaceutical 
Chemical Co., Cairo, Egypt; h Total carbohydrate content was determined by the difference: total carbohydrate = 100 
− (% crude protein + % crude fat + % total ash + % moisture); i Dietary gross energy was calculated using the 
conversion factors of 5.6, 9.4 and 4.2 kcal kg-1 for protein, lipids and carbohydrates, respectively. 
  
Zooplankton count 
 
Samples collection. Zooplankton samples were collected from biofloc systems using 
zooplankton net (55 µm, 25 cm diameter and 80 cm length) every 10 days (P1: 10 days, 
P2: 20 days and P3: 30 days). Three liters of water were collected and filtered by the 
zooplankton net. After filtration, each sample was fixed immediately using formaldehyde 
solution (4-7%) and was stained afterwards using Rose Bengal stain (Goswami 2004). 
  
Analysis of sample. The filtrated plankton samples were examined with Optic Research 
Microscope. Three sub-samples (one mL each) of the homogenized plankton samples 
were transferred to a counting cell and the different organisms were counted. 
Zooplankton population was then calculated as the number of individuals of the different 
species per cubic meter. The organisms were identified and counted on the counting tray 
with a magnifying lens of magnifying power ranging from 100X to 400X. Zooplankton 
organisms were identified according to description and keys constructed by Edmondson 
(1959) and Pennak (1955) in addition to keys by Fernando (1994) and Jeje (1988). 
 
Zooplankton calculation. Zooplankton was calculated after examination for all the 
recorded species in each sample and expressed for (quantity of organisms/L) depending 
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on the following equation according to APHA (2005): No of organisms/litter = N*D/S*C. 
Whereas, N = number of organisms for the calculated species; D = volume of sample 
after filtration; S = number of subsamples; C = total volume of the collected water 
sample. 
 
Fatty acids analysis 
 
Lipid extraction. A quantity of 2-20 g of dried biofloc samples were weighed into a 250 
mL centrifuge bottle, sufficient water was added to bring the total water to 16 mL then 
40 mL methanol and 20 mL chloroform was added. The mixture was Macerated for 2 min, 
then 20 mL chloroform was added and samples were macerated for 30 sec. Another 20 
mL water was then added and samples were macerated again for 30 sec. The mixture 
was then centrifuged for 10 min at 2000-2500rpm. The lower chloroform layer was 
drawn off and filtered through a coarse filter paper into a dry weighed flask or beaker. 
The chloroform was evaporated to dryness (Egan et al 1981).  
 
Methylation of lipid. Fifty (50) mg of the lipid was weighted into a tube. Five (5) mL of 
methanolic-sulphuric acid (1 mL conc. sulphuric acid and 100 mL methanol) and 2 mL of 
benzene was added to the weighted lipid. The well was placed in water bath at 90oC for 
an hour and half. The well was cooled and 8 mL water and 5 mL petroleum ether was 
added and was shacked strongly. The ethereal layer was separated in a dry tube and 
evaporated to dryness (Taha et al 2015).    
 
Statistical analysis. Data was statistically analyzed using SPSS 16.0 software. Odd 
replicates were omitted for data integrity. Significant differences were considered at (p < 
0.05) and data were ranked using Duncan multiple range test. 
 
Results and Discussion  
 
Water quality. Water quality parameters values are shown in Table 2. DO, temperature, 
pH, alkalinity, TSS, TAN and nitrite were within the normal limits for fish culture (Stone & 
Thomforde 2004; Stickney 2005; Emerenciano et al 2017). No significant differences (p 
> 0.05) were noted among the treatments for DO, temperature, pH, water alkalinity, floc 
volume, nitrite. All carbon sources resulted in a decrease in ammonia nitrogen along the 
span of the one month experiment in harmony with the increase of TSS value. Cellulose 
(complex carbon source) had significantly higher (p < 0.05) TAN average values than 
other treatments. The last treatment showed a slow decrease rate for ammonia as the 
lowest reading was reached at the third week. This indicates that bacteria under such 
treatment spent longer time to assimilate the carbon source (cellulose) (Figure 1). Nitrite 
showed the lowest values for all treatments by the third week (Figure 2). The higher 
numerical average of DO for cellulose treatment confirmed the last hypothesis as this 
indicates the low activity of the microbial community. Khanjani et al (2017) and Silva et 
al (2017) pointed out that the simplicity of the carbon sources plays a pivotal role in 
efficient uptake of nitrogen which led to more accumulation of bacterial cells.  
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Figure 1. Effect of different carbon sources on total ammonia-nitrogen in biofloc system. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Effect of different carbon sources on Nitrite in biofloc system. 
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Table 2 
Water quality measurements (average and range) of different experimental treatments (mean±SD) 

 
Carbon sources Parameters 

Glucose Starch Molasses Cellulose 
P 

Dissolved oxygen (mg L-1) 4.42±0.08 (4.37-4.48) 4.37±0.08 (4.28-4.42) 4.27±0.13 (4.18-4.36) 4.50±0.02 (4.49-4.51) 0.15 
Temperature (°C) 25.79±0.16 (25.68-25.90) 25.83±0.15 (25.67-25.94) 25.88±0.07 (25.83-25.93) 25.78±0.10 (25.71-26.85) 0.87 

pH 8.21±0.02 (8.20-8.23) 8.20±0.04 (8.22-8.24) 8.18±0.06 (8.14-8.22) 8.25±0.02 (8.23-8.26) 0.44 
Alkalinity (mg CaCO3 L-1) 348.70±10.89 (341-356.40) 335.13±27.51 (308-363) 344.30±29.56 (323.4-365.20) 325.60±15.56 (314.60-336.60) 0.77 

Floc volume (mg L-1) 17.42±4.36 (14.33-20.50) 16.72±3.67 (13-20.33) 59.61±64.75 (13.83-105.4) 14.25±0.82 (13.67-14.83) 0.41 
Total suspended solids (mg L1) 284.88±28.11 (265-304.75) 220.17±28.44 (203-253) 284.5±80.61 (227.50-341.5) 270.12±16.79 (258.25-282) 0.36 

Total ammonia-nitrogen (mg L1) 0.26±0.05b (0.22-0.30) 0.35±0.04b (0.32-0.39) 0.25±0.05b (0.21-0.28) 0.60±0.16a (0.49-0.72) 0.02 
Nitrite (mg L-1) 0.72±0.16 (0.60-0.83) 0.64±0.14 (0.53-0.79) 0.74±0.03 (0.72-0.76) 0.78±0.37 (0.52-1.04) 0.87 

Values in the same row with different superscripts are significantly different (p < 0.05). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



AACL Bioflux, 2018, Volume 11, Issue 3. 
http://www.bioflux.com.ro/aacl 788 

Growth performance. Growth performances, survival rate and feed utilization results 
are shown in Table 3. The best growth and feed conversion values were recorded for Nile 
tilapia in cellulose treatment. While the worst values for the last parameters were noted 
for Nile tilapia under molasses treatment. No significant (p > 0.05) differences were 
detected in feed intake and survival rate value among the treatments. It was suggested 
by many authors that fertilizing biofloc system with different carbon sources had no 
effect on tilapia or shrimp growth performance. Addition of molasses, sugar or cassava 
starch showed no effect on the growth performance of tilapia cultured under biofloc 
system, while a positive effect on microbial floc formation was recorded for both 
molasses and sugar (Silva et al 2017). The same was suggested by Serra et al (2015) for 
shrimp cultured under biofloc system where different carbon sources were examined 
(molasses, sugar, dextrose and rice bran). Supplementing biofloc system with molasses, 
starch, wheat flour or a mixture of them had no significant effect on shrimp growth 
Khanjani et al (2017). On the other hand, growth performance of Peneus monodon was 
higher with addition of jaggery in biofloc system than other carbon sources like cane 
sugar and molasses (Sakkaravarthi & Sankar 2015). In another study on the same 
species, rice flour improved growth performance and immune response compared with 
molasses under biofloc system (Kumar et al 2017). While, Litopenaeus schmitti (white 
shrimp) had the significant highest growth performance after utilizing brewery residues 
as a carbon source compared to other carbon sources like sugar cane molasses and 
cassava flour (Fugimura et al 2015). Meanwhile, mixture of different carbon sources 
(60% molasses + 20% corn flour + 20% wheat bran) positively affected the growth of L. 
vannamei in comparison with molasses as a single carbon source (Wang et al 2016).  
 

Table 3 
Effect of different treatments on growth performance, feed intake and survival rate (Mean±SE) 

 

Means in the same row with different superscripts are significantly different (p < 0.05); 1FI - feed intake; 
2FCR - feed conversion ratio = feed intake/weight gain. 
 
Taxonomical identification of biofloc zooplankton community. The zooplanktons 
taxonomical distributions of biofloc treatments with different carbon sources were 
detected along the experimental periods (10, 20 and 30 days) and the results are 
represented in Table 4 and Figures 3-9. The groups identified were mainly rotifers and 
protozoa while no nematodes, copepods and other species were discovered in the 
experiment samples unlike many other studies (Azim & Little 2008; Sakkaravarthi 2015; 
Rajkumar et al 2016; Manan et al 2016, 2017). This less variety compared to other 
studies may be related to the short culture period (30 days) and condition. Total 
zooplankton count increased in all treatments over the experiment time with no 
significant differences among treatments (Figure 3). Generally, rotifer group (mainly 
Lecane bulla and Philodina species) dominated the biofloc medium with exception of 
cellulose treatment value at P2, where protozoa showed higher values (Table 4). The 
rotifers are grazing species (Manan et al 2017), that consume protozoa which may be an 
explanation for the current experiment results as protozoa percentage was mostly lower 
than rotifer in biofloc composition (Table 4). A poor correlation was noticed among total 
zooplankton count and the biofloc TSS, which suggest that TSS had no effect on the 
zooplankton count during the experimental periods (P1, P2 and P3) (r2 = 0.13, -0.18 and 
0.35, respectively).  
 
 
 
 

Carbon sources Parameters 
Glucose Starch Molasses cellulose 

P 

Average final body weight (g) 12.57±0.44b 11.85±0.20b 11.12±0.46b 14.24±0.68a 0.41 
FI1 (average feed intake) (g) 8.70±0.06 8.82±0.10 9.33±0.71 9.63±0.59 0.02 

FCR2 2.61±0.40b 3.32±0.35b 6.50±1.16a 2.13±0.05b 0.01 
Survival rate (%) 100±0 100±00 95±5 95±5 0.49 
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Table 4 
Zooplankton species percentages (%) of different samples treated with different carbon sources along three sampling periods 

 
Carbon  sources 

Glucose  Starch  Molasses  Cellulose  
 

Species 
 P1 P2 P3     P1 P2 P3 P1 P2 P3 P1 P2 P3 

Cephallodella sp. 0.00 0.67 0.07 0.00 1.60 0.00 0.00 0.44 0.07 0.00 6.21 0.00 
Lecane bulla 0.33 98.65 99.63 0.00 79.65 84.36 0.90 51.20 93.89 0.00 37.28 15.57 

Lecane closterocerca 0.00 0.58 0.19 0.00 13.62 13.21 14.01 0.07 1.84 0.00 2.96 76.23 
Philodina sp. 88.65 0.00 0.11 55.79 0.16 0.09 74.47 47.61 0.58 73.17 1.78 0.75 
Total Rotifera 88.98 99.90 100.00 55.79 95.03 97.66 89.39 99.34 96.39 73.17 48.22 92.54 
Vorticella sp. 11.02 0.10 0.00 44.21 4.81 1.51 7.41 0.00 0.00 26.83 47.93 0.00 

Paramecium sp. 0.00 0.00 0.00 0.00 0.00 0.83 3.20 0.52 3.61 0.00 3.85 7.46 
Total Protozoa 11.02 0.10 0.00 44.21 4.97 2.34 10.61 0.66 3.61 26.83 51.78 7.46 
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Figure 3. Total zooplankton count of different carbon sources in biofloc system for different periods. 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Philodina sp. count of different carbon sources in biofloc system for different periods. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Lecane bulla count of different carbon sources in biofloc system for different periods. 
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Fatty acids analysis. Fatty acids profiles of different biofloc samples are presented in 
Table 5. No significant differences were recorded between glucose (simple carbon source) 
and cellulose (complex carbon source), which is in contrast with the findings of Crab et al 
(2010) and Ekasari et al (2010). They described that biofloc fatty acids profile richness 
depended on the carbon source applied. Total saturated fatty acids showed higher ranges 
(41.6-51.4%) in comparison with the value (10.76%) recorded by Ekasari et al (2010) 
who grown biofloc on glucose. Azim & Little (2008) used wheat flour (complex carbon 
source) and showed lower values for total saturated fatty acids (30.2%). As for mono 
saturated fatty acids, our results (27.41-30.43%) were similar to that recorded by Azim 
& Little (2008). Total n-6 fatty acids percentages were lower in our study than previous 
authors which may be due to the richness of their biofloc as it was pre-inoculated from a 
tilapia farm source in a study of Ekasari et al (2010) and longer experimental period (12 
weeks) in the case of Azim & Little (2008) study. Short experimental period in our case 
may resulted in low zooplankton biodiversity, subsequently poor biofloc fatty acids 
profile. Protozoa, Rotifera, Oligochaeta, Paramecium, Tetrahymena and Petalomonas 
were identified in the aforementioned study (Azim & Little 2008), while Rotifera and 
Protozoa represented the zooplankton community in our case.  

Figure 6. Percentage of total rotifer and 
protozoa in glucose treatment. 

Figure 7. Percentage of total rotifer and 
protozoa in starch treatment. 

Figure 8. Percentage of total rotifer and 
protozoa in molasses treatment. 

Figure 9. Percentage of total rotifer and 
protozoa of cellulose treatment. 
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Table 5 
Fatty acids percentage profile of biofloc samples acquired from four different carbon 

sources (values are mean±SE) 
 

Carbon sources Fatty acid (%) 
Glucose *Starch *Molasses Cellulose 

P 

C6:0 0.11±0.11 ND ND 0.08±0.08 0.86 
C8:0 0.03±0.03 0.06 ND 0.05±0.01 0.62 
C11:0 0.17±0.17 ND ND 0.29±0.02 0.60 
C12:0 2.79±0.12 2.77 3.64 2.48±0.11 0.21 
C13:0 6.68±0.27 5.99 8.64 6.25±0.21 0.34 
C14:0 9.31±0.75 8.19 13.77 9.76±1.48 0.81 
C14:1 7.05±4.88 2.23 14.92 6.37±4.41 0.93 
C15:0 16.28±0.64 14.28 19.67 16.94±0.68 0.55 
C15:1 9.51±0.45 7.97 11.68 9.60±0.23 0.87 
C16:0 11.72±2.12 10.32 ND 12.30±0.79 0.82 
C16:1 4.50±0.69 3.62 3.3 4.71±0.41 0.81 
C18:0 4.30±4.30 ND ND ND 0.42 

C18:1n7 2.09±2.09 10.88 ND 5.00±0.67 0.32 
C18:1n9 4.27±0.09 5.73 ND 3.32±0.24 0.07 
C18:2n6 1.20±1.20 4.36 ND 1.31±1.30 0.96 
C18:3n3 2.18 ± 2.18 ND ND ND 0.42 
∑ Sat. 51.41±3.64 41.6 45.72 48.17±1.59 0.50 

∑ Mono-Unsat. 27.41±3.84 30.43 29.91 29.01±4.14 0.80 
∑ Poly-Unsat. 3.39±1.38 4.36 ND 1.31±1.31 0.33 

∑ ω 6 1.20±1.20 4.36 ND 1.31±1.31 0.96 
∑ ω 3 2.18±2.18 ND ND ND 0.42 
∑ ω 9 4.27±0.09 5.73 ND 3.32±0.24 0.07 

*Data obtained from one replicate of the treatment; ND = not detected. 
 
Conclusions. According to the present study, cellulose as an organic carbon source 
showed efficiency in contributing to the stability of water quality parameters and the fish 
performance. This suggests the ability of using agricultural by-products as a carbon 
sources for biofloc system which is more economical and eco-friendly. 
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