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Abstract. The penaeid shrimp Litopenaeus vannamei (vaname) has become a mainstay of tropical 
shrimp aquaculture since 2003. Super-intensive pond technology for vaname shrimp production is known 
to discharge high levels of organic waste due to the high stocking density and large volume of feed used. 
This organic waste will become dispersed in the coastal waters around super-intensive ponds. The 
research aimed to detect the distribution of organic waste discharged from two super-intensive shrimp 
ponds, using stable isotopes of C and N. Sediment, seagrass, and Sargassum samples were collected 
around the outlets of two super-intensive ponds. Stable isotope concentrations of these samples were 
analysed, as well as those of the feed used by the shrimp farms. While there was no evidence of either C 
or N uptake in sediment type 1, sediment type 2 had elevated levels of both N (15N) and C (13C) 
fractions. Sargassum only showed evidence of C (13C) uptake, over around 5 ha. However seagrass 
samples showed uptake of shrimp farm organic waste over more than 9 ha, based on both N (15N) and 
C (13C) fractions. These results indicate that seagrass could provide bio-filtration for organic waste from 
super-intensive shrimp ponds.    
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Introduction. The penaeid shrimp Litopenaeus vannamei (vaname) has become a 
mainstay of tropical shrimp aquaculture since 2003 (FAO 2006). The development of 
super-intensive pond technology for vaname culture has proven both feasible and 
profitable; however there is considerable concern over the high levels of organic waste 
discharged into coastal waters by super-intensive shrimp farms due to the high stocking 
densities and high volume of feed used. As stated by Wu (1995), environmental impacts 
from aquaculture vary greatly depending on the species cultured, aquaculture technology 
used, stocking density, feed type, and the site, especially hydrographical factors. 
Furthermore, according to Gowen et al (1991), the impacts of organic waste discharge 
are not limited to the immediate vicinity of the source, are likely to promote 
eutrophication, and can cause widespread changes in surrounding ecosystems. Observed 
impacts may include declines in the biomass, density, and diversity of benthos, plankton 
and nekton, modification of natural food webs, and phase shifts. 

Organic waste discharged by super-intensive ponds will inevitably be transported 
and distributed by currents in the coastal waters around the shrimp farm. The distance to 
which the waste is transported will be determined by current strength, direction, and tidal 
regimes. Strong currents and high tidal range will tend to carry the waste over greater 
distances and be more effective in diluting the pollution burden, thus reducing the 
environmental impacts. Conversely, when currents are sluggish and the tidal range is 
small, the organic waste will tend to remain close to the source, resulting in higher 
concentrations with greater impact on the underwater environment. As pointed out by 
Iwama (1991), the transport distance of organic waste from aquaculture facilities in a 
marine environment is a function of current speed, water depth, and the total organic 
waste discharged. The later factor is especially important in terms of significant 
environmental impacts close to the organic waste source. According to Olsen et al 
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(2008), the capacity of coastal ecosystems to assimilate water-borne nutrients is 
mediated by two principal mechanisms: (1) the absorption of nutrients by phytoplankton 
and transfer through the food chain to higher trophic levels, and (2) the dilution of 
nutrients and organic matter, mediated by the hydrodynamic characteristics of the site in 
question. 

Potential negative impacts from aquaculture discharges can include changes in 
sediment chemistry as well as seagrass community dynamics, in particular benthic 
macrofauna, meiofauna and bacterial communities (Holmer 1992; Findlay & Watling 
1997; Hargrave et al 1997; Pergent et al 1999; Pearson & Black 2000; La Rosa et al 
2001; Mirto et al 2002). From a spatial perspective, the extent of organic waste impacts 
needs to be understood in order to seek appropriate organic waste management 
solutions, before and after discharge into the environment. In particular, Hu et al (2009) 
point out that the composition, distribution and source of organic matter in marine 
sediments is crucial to the understanding of mechanisms to regulate the release of 
organic matter into the marine environment. 

The distribution of organic waste around super-intensive ponds could be tracked 
through studying stable isotope fractions, in particular those present in marine sediments 
and seaweeds (macroalgae). Aberson et al (2016) found that stable isotopes could be 
used in studies on the polychaete worm Hediste diversicolor and the macroalga Ulva 
spp., organisms considered to be indicators of organic waste pollution. H. diversicolor 
preys on organic waste consuming microphytobenthos, while Ulva spp. organic waste 
from the water column. 

The primary biogeochemical cycles of biological importance are those of the 
elements carbon, nitrogen, oxygen, sulphur, and metals, all of which are connected to 
the presence, transport, and transformation of organic matter. Differences in the 
chemical composition and isotope ratios of organic matter can help determine its origin 
and age, how it was transported and assimilated in a given environment (Kruger et al 
2016). In particular, stable isotopes in organic and inorganic particles have been used to 
study ecological processes and deposition history in marine environments (Naidu et al 
1993; Schubert & Calvert 2001). Stable isotopes of carbon and nitrogen have also been 
used to determine the accumulation of heavy metals in fish bodies (Liu et al 2018).  
Laboratory simulations show that stable isotopes can be used to trace the source and 
distribution of Pb in the waste burning process (Li et al 2017). 

The ratio of the (δ15N) stable isotope of nitrogen is considered as a suitable choice 
for analyses aiming to identify the source(s) of nitrogen present in marine systems 
(Costanzo et al 2001; Carballeira et al 2013). In particular, the analysis of stable isotope 
ratios has been used successfully to determine trophic relationships between organisms, 
to identify the source or origin of organic waste (terrestrial and marine), and in the 
analysis of environmental impacts (Risk & Erdmann 2000; Costanzo et al 2001). 
Measurements of stable isotopes of organic carbon (δ13C) and nitrogen (δ15N) in sediment 
can enable the identification of organic waste sources (Mahmood et al 2016). Stable 
isotopes of organic carbon (δ13C) and nitrogen (δ15N) have also been used to study the 
impacts of aquaculture waste (Jiang et al 2013). Furthermore, stable isotopes of C and N 
have been used to study the distribution or dispersion of organic waste discharges from 
aquaculture through tracing the signature of organic matter contained in feed. The 
detection of feed signature has been successful in organic matter within benthic sediment 
(Sarà et al 2004) as well as in seagrass (Enhalus acoroides) and the macroalgae 
Sargassum bacciferum. Thus, this research aimed to apply the sable isotope ratio method 
to detect the dispersal and distribution of organic waste discharged from super-intensive 
shrimp ponds in Labuange Bay, District Barru, South Sulawesi Province, Indonesia. 
 
Material and Method. The underlying principle of stable isotope ratio analysis is to 
determine the similarity or difference in δ13C and δ15N content between samples collected 
from the environment and organic waste discharged from super-intensive vaname shrimp 
aquaculture. In this case, samples for the detection of organic waste were taken from the 
benthic sediment, seagrass, and macroalgae (Sargassum) in coastal waters around two 
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super-intensive shrimp farms which both discharge the organic waste from their ponds 
into Labuange Bay.   

 The sampling stations were selected based on a current model for the waters 
around the outlets of the super-intensive ponds (Figure 1). Sediment, seagrass and 
Sargassum samples were collected from 6-7th September 2016 during the dry season. 
The timing of sample collection was based on the assumption that primary production 
(phytoplankton and macroalgae) is greatest during the dry season, and thus the isotope 
signal should also be at a maximum at this time of year (Margalef 1985). In general, 
background isotope composition of sediment and macroalgae should remain constant or 
become enhanced during the rainy season, however spatial variability tends to be more 
marked and meaningful than temporal variability (Smith 1996; Hargreaves 1998). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Current and organic waste transport model for Labuange Bay near the outlets of 

two super-intensive shrimp ponds. 
 

Sediment was collected at a time when the ponds were in use, at four points along each 
of the transects which were aligned perpendicular to the predominant current direction. 
The transects were set at 25, 50, 100 and 200 metres from the pond outlets respectively 
(Mazzola & Sarà 2001). Sediment samples were collected using a van Veen grab. 
Samples from each transect were combined, and prepared for analysis, after which a 
subsample of 200 g was taken. Sampling of seagrass and Sargassum is done by making 
a transect parallel to the coast that cuts off the seagrass and Sargassum communities. 
Then the transect is divided into three sampling points, i.e one point at the center and 2 
points on both ends of the transect. The three samples from the three points are then 
composite. Samples of the feed used in the shrimp farms were also collected. In total, 
the final analysis was performed on two samples each of feed, sediment and seagrass, 
and one Sargassum sample, making a total of 7 samples.  

The carbon and nitrogen isotope ratios of the sediment, seagrass, and Sargassum 
samples were analysed at the Indonesian National Nuclear Agency Laboratory. Firstly, all 
samples were treated with acid (2 N HCl), then rinsed with decarbonised water and dried 
at 60oC for 24 hours. The isotope composition of each sample was determined using a 
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Finnigan Delta-Plus spectrometer, to provide isotope concentration values expressed in 
parts per thousand (Sarà et al 2004). 

The stable isotope ratios were calculated according to the formula from Sarà et al 
(2004): 

δ13퐶 표푟 δ15 푁 =  
푅푠푎푚푝푙푒
푅푠푡푎푛푑푎푟푑

− 1  푥 103 

Where: 푅 =
13 퐶
12 퐶

 표푟 
15 푁
14 푁

   
 

The fraction or percentage of contamination of each sample (with feed-containing 
organic waste) was calculated using the equation from Mongelli et al (2013): 

 
 

 
where: : contaminant fraction;  
  (13C or 15N)sample: sample isotope (13C or 15N) concentration (‰); 
  (13C or 15N)contaminant: contaminant isotope (13C or 15N) concentration (‰); 
           (13C or 15N)reference: reference isotope (13C or 15N) in the absence of 
contamination (‰). 
 
Results and Discussion. The results of the stable isotope analyses (for 15N and 13C) 
are shown in Table 1, using reference concentration of stable isotopes 15N and 13C from 
uncontaminated seagrass. Isotope concentrations are expressed in parts per thousand 
(‰). The stable isotope concentrations for the feed were 5.35 and 7.11‰ for 15N, and 
-23.77 and -25.52‰ (two samples) for 13C, and used as reference values for the 
contaminant. Stable isotope concentrations for the five other samples ranged from -7.47 
to 8.20‰ for 15N, and from -13.55 to -7.74‰ for 13C. These different isotope 
concentrations can be seen as the finger print of each sample, indicating the likelihood of 
influence from the surrounding environment.   

 
Table 1 

Stable isotope (15N and 13C) concentrations 
 

No. Sample 15‰ 13C‰ 

1 Seagrass-1 8.2 -11.81 
2 Seagrass-2 3.3 -13.55 
3 Sargassum -2.58 -12.38 
4 Feed-1 7.11 -23.77 
5 Feed-2 5.35 -25.52 
6 Sediment-1 -3.38 -7.74 
7 Sediment-2 -7.47 -12.48 
8 Seagrass (Thornton & McManus 1994) -2 -10 

 
The stable isotope data were plotted to show the correlation between 15N and 13C 
(Figure 2). This plot shows that the values for seagrass and Sargassum samples fall 
between the mixing line for the feed (contaminant) and the (uncontaminated) reference 
seagrass. The sediment-2 sample had the lowest 15N concentration, and appears 
depleted compared to the other samples; conversely, the seagrass-1 sample had the 
highest 15N concentration, and seems enriched. The low 15N concentration of sediment-
2 is likely due to a low contribution of nitrogen from shrimp feed waste, indicating that 
the sediment is not much affected by organic waste from the ponds; on the other hand, 
the high (enriched) 15N concentration in seagrass-1 indicates a significant impact from 
the feed-containing waste. 
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Figure 2.  Correlation between 15N and 13C for all samples and the reference seagrass values. 

 
Although seagrass-1 appears to have the highest level of contamination, both seagrass-1 
and seagrass-2 samples indicate much higher levels of contamination than in the other 
samples (Sargassum and sediment). The seaweed sample Sargassum is indicative of an 
intermediate level of contamination, while the two sediment samples do not show 
evidence of contamination.   

Based on the highest isotope concentrations of feed-1 (13C = -23.77‰ and 15N 
= 7.24‰), the contribution of the contaminant to each sample is shown in Table 2. 
These data indicate that in the sample seagrass-1, the vast majority (around 95%) of the 
nitrogen-15 (15N) concentration and 13% of the carbon-13(13C) concentration most 
likely originated from the feed-containing organic waste discharged from the shrimp 
ponds. It should be noted that N generally comes from the protein and C from the 
carbohydrate contained in shrimp feed. The seagrass-2 sample had a somewhat lower 
(58%) level of nitrogen-15 but a higher (26%) carbon-13 level, the latter double the 
value for seagrass-1. The seaweed (Sargassum) sample showed carbon-13 uptake (17%) 
but no nitrogen-15 was detected. The lack of N and relatively low C contaminant uptake 
by Sargassum could be due to the seasonal nature of Sargassum mats, unlike the 
seagrass which is rooted in place and thus exposed to organic waste from the super-
intensive shrimp ponds throughout the year.    

 

Table 2 
Estimated contaminant fraction from shrimp feed by sample 

 

No. Sample 
15N-based 

contaminant 
fraction (%) 

13C-based 
contaminant 
fraction (%) 

Inferred 
conclusion 

1 Seagrass-1 0.95 0.13 uptake 
2 Seagrass-2 0.58 0.26 uptake 
3 Sargassum 0 0.17 uptake of 13C 
4 Feed-1 (contaminant) 1 1 - 
5 Sediment-1 0 0 no uptake 
6 Sediment-2 0 0.17 uptake of 13C 
7 Seagrass (Thornton & McManus 1994) 0 0 - 
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Nitrogen-15 was not detected in either of the sediment samples, but carbon-13 
was detected (17%) in sample sediment-2, similar to the Sargassum sample. Burford et 
al (2002) found that sediment is generally only slightly contaminated or not 
contaminated by organic waste due to the swift remineralisation processes mediated by 
microbial communities which facilitate anorganic diffusion. In contrast to the sediment, 
which does not readily absorb contaminants present in the water column, seagrass and 
Sargassum are living organisms which readily absorb nutrients from their environment, 
and can thus more readily become contaminated. The extent of coastal waters 
contaminated by organic waste discharged from each of the super-intensive shrimp farm 
outlets is shown in Figure 3. For the more northerly farm, the respective extent of areas 
around the outlet where seagrass and Sargassum showed evidence of contamination 
were around 3.44 and 3.15 ha respectively. For the second (southern) farm, 
contaminated areas around the outlet based on seagrass and Sargassum sp. were 5.88 
and 1.89 ha respectively.   

Figure 3. Extent of areas in Labuange Bay showing evidence of super-intensive shrimp 
pond organic waste contamination based on seagrass (green) and macroalgae (orange) 

stable isotope analyses. 
 
Conclusions. The relation between N (15N) and C (13C) stable isotope fraction present 
in the feed used in the super-intensive shrimp farms with those present in seagrass 
around the farm organic waste discharge outlets indicate that organic waste is both 
dispersed and accumulated by organisms in the surrounding waters. The findings also 
indicate that seagrass may play a role in the biofiltration of organic waste discharges.  
Conversely, N (15N) and C (13C) fractions from shrimp feed were absent in the 
sediment, especially in seagrass meadows. This absence is likely due to uptake of 
dissolved N (15N) and C (13C) by seagrass, while the strong tidal currents likely limit the 
deposition of particles to very low levels which can be processed and diffused through 
abiotic and microbial mechanisms.  
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