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Abstract. This study aimed to evaluate the effects of land use on aquatic insect communities in and 
around the streams of Kinabalu Park, Sabah, Malaysia. Five sampling stations were selected from pristine 
streams (S1 and S2) and streams in the vicinity of human activities (S3, S4, and S5). Aquatic insects 
were sampled using Surber net from June 2012 to January 2013. A total of 10360 individuals of aquatic 
insects from nine orders, 49 families, and 67 genera were collected. Order Coleoptera (27%), 
Ephemeroptera (26%), Trichoptera (24%) were the common orders found in the streams of Kinabalu 
Park. Stenelmis spp. (12%) was the dominant taxa, followed by Psephenus spp. (10%) and Hydropsyche 
spp. (8%). Pristine streams generally had higher total abundance, genera richness and diversity of 
aquatic insects. Based on the water parameters, all stations were classified as Class I. Biotic indices rated 
most stations were not impacted, but lower values were found in S3, S4, and S5. Canonical 
Correspondence Analysis (CCA) showed that water temperature, canopy cover, water velocity and 
stream width were the most influential environmental parameters on aquatic insect assemblages in the 
streams of Kinabalu Park.  
Key Words: aquatic insects, anthropogenic activities, tropical streams, Kinabalu Park, Sabah. 
 

 
Introduction. Freshwater ecosystems are critical for human survivability and 
development, as it provides vital resources and function such as water supplies, food 
resources, purification of human wastes, groundwater discharge, recreation and 
transportation (Baron et al 2002; Aylward et al 2005). Yet, the increasing demands on 
freshwater ecosystem due to the exponential human population growth and economic 
development had impaired the freshwater environments that included rivers, lake, and 
wetlands. These increase the needs to monitor and manage the freshwater environment. 

Freshwater ecosystem in Malaysia constitutes with extreme habitats such as peat 
swamp forest, caves and alpine region (Morse et al 2007). Extreme rapid development 
has occurred in Malaysia since the 1970’s. Urbanization, deforestation, construction, land 
conversion, and industrialization has been the main anthropogenic stressors that 
adversely impact the freshwater ecosystem in Malaysia. In 2014, 48% among the 473 
rivers monitored were found to be polluted (Department of Environment 2015).  

In Southeast Asia, established biomonitoring mostly used the guidelines and 
protocols from developed countries with slightly modification for the differences in 
habitats and aquatic insect diversity (Sudaryanti et al 2001; Morse et al 2007; Mekong 
River Commission 2010). In Malaysia, there is a lack of aquatic insect studies and mostly 
focus on biodiversity surveys (Morse et al 2007). The monitoring of water quality in 
Malaysia is relying on traditional physico-chemical and microbial measurements. The 
Water Quality Index (WQI) derived from standardized measurements is used to 
determine the freshwater water quality in Malaysia (Arsad et al 2012). Monitoring of the 
water quality in Malaysia is mostly done by monitoring stations of National Monitoring 
Network, established by Malaysia Department of Environment. 

Kinabalu Park as one of the protected areas in Sabah has unique, diverse and 
endemic biota. Flora and fauna in the Kinabalu Park had been studied extensively 
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(Takashi 1991; Wong & Chan 1997), yet little was known of the aquatic insect 
communities in the park. In addition, the streams of Kinabalu Park are subjected to the 
impact from nearby agricultural activities of local villagers and tourism activities (Nais 
1996; Juin et al 2000). Therefore, this study aimed to evaluate effects of land use on 
aquatic insect communities of the streams in and around the Kinabalu Park. 

  
Material and Method 
 
Study area. Five sampling stations with 100 m reach were selected from Sg. Liwagu 
(S1), Sg. Silau-Silau (S3) , Sg. Mesilau East (S2 and S4) and Sg. Mesilau West (S5) in 
the vicinity of Kinabalu Park (Figure 1). Stations in Sg. Liwagu and upstream of Sg. 
Mesilau East was located in pristine forest area; station in Sg. Silau-Silau located in 
Kinabalu Headquarters; another station in the downstream of the Sg. Mesilau East, near 
the Mesilau Nature Resort; and the last station at Sg. Mesilau West, where small-scale 
plantation was located. The five sampling stations were sampled monthly for six sampling 
occasions. 

 
Figure 1. Map shows the five sampling stations (S1-S5) at Kinabalu Park. 
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Aquatic insects. Samplings were conducted from June 2012 until January 2013. Surber 
net (mesh size of 500 µm) was used to sample aquatic insects in the following in-stream 
habitats: riffle, run, and pool. Each of these habitats had five randomly selected 
replicates. Kick sampling technique was applied for collection in the riffle and run areas. 
One meter square area in front of the net was disturbed for two minutes. Meanwhile, 
insects in pool section were collected by continuous sweeping through the water when 
the bottom substrates were disturbed for two minutes. Specimens sorted in the field 
were identified and stored in 75% of ethanol. The taxonomic keys from Yule & Yong 
(2004), DeWalt et al (2009), Morse et al (1994), and Merritt et al (2008) were used to 
identify the specimens. 
 
Physical and water quality parameters. Three transects were established for the 
measurement of the physical and water quality parameters before collecting the aquatic 
insects. Water temperatures, dissolved oxygen (DO), salinity, pH, and conductivity were 
measured in situ using the HANNA Multiparameter Meter (Model Hi 9828). Stream width 
and depth were measured with measuring tape and steel ruler. Canopy cover measured 
with a Spherical Densiometer. Water velocity was derived from the method described in 
Carter  et al (2006). A buoyant object was used and the amount of time it flow through 
the length of the measuring tape lay along the edge of the stream were measured. 
  
Data analysis. Shannon diversity index and evenness index were applied to determine 
the diversity of aquatic insects. Three biotic indices including Ephemeroptera, Plecoptera, 
and Trichoptera (EPT) richness, Biological Monitoring Work Party (BMWP) and Average 
Score per Taxa (ASPT) were calculated to evaluate the biological quality of the streams.  
EPT index is simply the taxa richness of the Ephemeroptera, Plecoptera and Trichoptera 
in the sample (Mandeville 2002). BMWP index is the summarization of the tolerance 
scores of each aquatic macroinvertebrate family found in a sample, which higher values 
indicate better water quality (Armitage et al 1983). ASPT is the average tolerance score 
of the assemblage, which was the division of BMWP by the number of families in the 
sample.   

Analysis of Variance (ANOVA) is performed to test the significant differences of 
variables between the stations using IBM SPSS Statistics Version 20. The tested variables 
included total abundance, genera richness, Simpson diversity index, Evenness index, EPT 
index, BMWP, ASPT, and the seven physical and water quality parameters measured for 
this study. Variables with non-normal distribution were log transformed. Welch ANOVA 
was performed for variables with heterogeneity of variances.  

Cluster analysis classifies the data into groups or clusters based on similarities or 
distance among data (McGarigal et al 2000). This method was used in this study to 
explore the aquatic insect taxa composition and distribution among the sampling 
stations. Unweighted Pair-Groups with Arithmetic Averages (UPGMA) method of cluster 
analysis were used with two similarities or distance, which were the Bray-Curtis distance.  

The aquatic insect composition and the physical water quality data were analyzed 
by Canonical Correspondence Analysis (CCA). CCA is a direct gradient analysis that 
elucidates the relationships between biological communities and their environment (Ter 
Braak and Verdonschot 1995). CCA was conducted using PC-ORD software Version 5 
(Peck 2010). Rare taxa with less than 5% occurrence were excluded from the CCA 
(Bachelet et al 1996). After removal of the rare taxa, 52 of 67 taxa and seven 
environmental parameters (water temperature, pH, conductivity, water velocity, stream 
width, depth and percentage of canopy cover) were analyzed with CCA. Monte-Carlo 
simulations with 999 permutations were used to verify the statistical significance of the 
relationships between aquatic insect assemblage and environmental parameters. 

 
Results and Discussion 
 
Water and biological quality. Table 1 summarizes the mean of the water quality and 
physical parameters at the streams of Kinabalu Park. In regard to the range of pH, 
conductivity, and DO recorded, all stations were classified as Class I, based on National 
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Water Quality Standards for Malaysia (Department of Environment 2015). Results of 
ANOVA illustrated that there was no significant difference (p > 0.05) of the water quality 
and physical parameters among the sampling stations (Table 1). 
 

Table 1 
Summary of mean (standard deviation) of water quality and physical parameters at the streams of 

Kinabalu Park. P values indicate statistical significance based on ANOVA test 
 

Parameters S1 S2 S3 S4 S5 P 
Temperature 

(ºC) 
14.79±1.6 16.14±0.93 16.90±0.18 14.49±0.85 16.29±0.52 0.78 

pH 8.26±0.79 8.04±0.58 7.69±0.64 8.07±0.31 7.63±1.34 0.03 
Conductivity 
(μS cm-1) 

21.50±4.64 18.00±6.13 16.17±3.13 27.17±7.49 30.61±14.1 0.09 

*DO (mg L-1) 4.68 4.15 4.68 5.01 4.62 - 
Velocity(m s-1) 0.50±0.13 0.46±0.11 0.34±0.10 0.38±0.08 0.39±0.06 0.18 

Width (m) 5.61±1.20 6.19±1.66 5.36±3.95 10.49±3.10 15.77±2.53 0.36 
Depth (cm) 30.01±2.49 18.88±8.73 13.53±2.41 26.81±6.84 22.51±8.19 0.56 
Canopy (%) 63.25±11.64 83.83±2.65 83.83±5.11 20.33±4.90 26.78±10.00 0.98 

*Data only available for the first sampling occasion due to equipment problem. 
 
The scores of the three biotic indices were summarized in Table 2. EPT, BMWP, and ASPT 
rated the most of the stations with very good water quality. S1 and S2 stations had the 
higher score compared to other three stations that located near to the human activities. 
Within the three disturbed stations, S3 produced the lowest scores for all three indices. 
Among all three indices, showed significant differences (p < 0.05), tested with ANOVA 
and Welch ANOVA. 

Based on the stream classification of water quality parameters, the streams of 
Kinabalu Park generally had good water quality and are fall within Class I. However, the 
difference can be detected through the biotic indices results. Consistent results from the 
three biotic indices indicate and ANOVA showed that both pristine streams (S1 and S2) 
had better water quality. The only exception was station S3 that had significantly lower 
water quality as indicated by both EPT index and BMWP index. This clearly demonstrates 
the usability of the biological indices to detect degradation in freshwater ecosystems. 
BMWP and ASPT indices had been implemented and shown to be suitable tools for stream 
quality assessment (Azrina et al 2006; Al-Shami et al 2011; Fikri et al 2013; Tan & Beh 
2015). 
 

Table 2 
Biotic indices scores in the five sampling stations. P-values for the statistical significance 

based on ANOVA and Welch ANOVA test  
 

Biotic 
indices S1 S2 S3 S4 S5 P 

EPT 21 17 7 15 15 0.000 
Rating Non 

impacted 
Non 

impacted 
Slightly 

impacted 
Non 

impacted 
Non 

impacted 
 

BMWP 151 153 72 120 123 0.000 
Rating Very good Very good Good Very good Very good  
ASPT 7.19 7.29 6.55 7.06 6.83 0.039 
Rating Rather clean  Rather clean Rather clean Rather clean Rather clean  

 
Aquatic insect communities. A total of 10360 individuals of aquatic insects, constituted 
by 49 families and 67 genera were collected for this study (Table 3). Order Coleoptera 
(27%), Ephemeroptera (26%), Trichoptera (24%) were the common orders in the 
streams of Kinabalu Park. In addition, the Stenelmis spp. (12%) was the most abundant 
taxa, followed by Psephenus spp. (10%) and Hydropsyche spp. (8%). However, the 
dominant taxa for each station were different: S1 dominated by Micrasema spp.; 
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Psephenus spp. (14%) in S2; Chironomidae (42%) in S3; Pseudocloeon spp. (11%) in 
S4; and Hydropsyche spp. (18%) in S5. 
 

Table 3 
Aquatic insect abundance among the five sampling stations. Code was used in CCA biplot 
 

Taxa Code S1 S2 S3 S4 S5 Total 
EPHEMEROPTERA        

Baetidae        
Baetis spp. T1 41 64 11 27 55 198 

Platybaetis spp. T2 155 33 4 43 63 298 
Pseudocloeon spp. T3 245 76 17 339 194 871 

Caenidae        
Caenis spp. T4 2 0 0 0 0 2 

Ephemerellidae        
Caudatella spp. T5 29 22 0 270 62 383 

Ephemerella spp. T6 15 5 2 113 3 138 
Heptageniidae        

Cinygma spp. T7 1 1 0 0 10 12 
Heptagenia spp. T8 86 36 1 17 37 177 

Epeorus spp. T9 48 147 0 60 90 345 
Leptophlebiidae        

Paraleptophlebia spp. T10 1 0 0 37 1 39 
Neophemeridae        
Neoephemeropsis spp. T11 0 3 0 0 0 3 

Potamanthidae        
Potamanthus spp. T12 16 160 0 0 0 176 
Rhoenanthus spp. T13 0 2 0 0 0 2 

Prosopistomatidae        
Prosopistoma spp. T14 2 0 0 0 0 2 

Tricorythidae        
Tricorythus spp. T15 0 5 0 0 3 8 

PLECOPTERA        
Perlidae        

Etrocorema spp. T16 65 23 0 1 0 89 
Neoperla spp. T17 3 18 0 5 1 27 

Phanoperla spp. T18 4 10 0 0 1 15 
Tetropina spp. T19 58 152 0 69 9 288 

Peltoperlidae        
Cryptoperla spp. T20 9 0 0 0 0 9 

Peltoperlopsis spp. T21 22 31 0 33 0 86 
Neumoridae        

Amphinemura spp. T22 1 0 0 5 4 10 
TRICHOPTERA        

Brachycentridae        
Micrasema spp. T23 406 8 0 83 0 497 

Ecnomidae        
Ecnomus spp. T24 0 2 0 0 7 9 

Glossosomatidae         
Glossosoma spp. T25 50 31 0 2 1 84 

Goeridae        
Goera spp. T26 9 4 0 18 0 31 

Hydropsychidae        
Aethalopsyche spp. T27 8 0 0 129 0 137 
Ceratopsyche spp. T28 27 61 14 38 18 158 

Cheumatopsyche spp. T29 23 45 3 19 4 94 
Hydropsyche spp. T30 77 122 1 284 388 872 

Hydroptilidae        
Ugandatrichia spp. T31 6 0 0 0 0 6 

Lepidostomatidae        
Lepidostoma spp. T32 45 54 4 266 19 388 

Limnocentropodidae        
Limnocentropus spp. T33 39 70 7 44 9 169 
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Philopotamidae        
Warmaldia spp. T34 2 31 1 0 1 35 

Polycentropodidae        
Cyrnellus spp. T35 2 0 0 4 2 8 

Psychomyiidae        
Tinodes spp. T36 1 0 0 0 0 1 

Rhyacophilidae        
Rhyacophilia spp. T37 5 6 0 15 11 37 
ODONATA        

Calopterygidae        
Matrona spp. T38 0 1 0 0 0 1 

Coenagrionidae        
Argia spp. T39 1 2 0 0 0 3 

Cordulegastridae        
Anotogaster spp. T40 0 0 2 0 0 2 

Corduliidae        
Cordulla spp. T41 0 1 0 0 0 1 

Euphaeidae        
Anisopleura spp. T42 0 0 0 0 1 1 

Gomphidae        
Leptogomphus spp. T43 0 1 0 0 0 1 

Micromiidae        
Micromidia spp. T44 0 0 1 0 1 2 

MEGALOPTERA        
Corydalidae        

Protohermes spp. T45 7 61 8 40 68 184 
HEMIPTERA        

Aphelocheiridae        
Aphelocheirus spp. T46 0 42 0 0 2 44 

Gerridae        
Naboandelus spp. T47 1 2 0 0 0 3 

Metrocoris spp. T48 9 8 5 7 9 38 
Naucoridae        

Hyocoris spp. T49 5 8 0 0 8 21 
Pleidae        

Paraplea spp. T50 0 0 0 2 1 3 
Vellidae        

Rhagovelia spp. T51 6 5 2 0 0 13 
LEPIDOPTERA        

Pyralidae        
Eoophyla spp. T52 2 13 0 0 2 17 
Elophila spp. T53 0 0 1 0 0 1 

Paracymoriza spp. T54 0 0 0 0 1 1 
COLEOPTERA        

Elmidae        
Grouvellinus spp. T55 77 108 0 196 110 491 

Stenelmis spp. T56 341 274 0 278 325 1218 
Gyrinidae        

Gyrinus spp. T57 0 2 0 0 0 2 
Lampyridae        

- T58 14 24 0 5 0 43 
Ptilodactylidae        

Stenocolus spp. T59 1 4 0 0 1 6 
Psephenidae        

Psephenus spp. T60 231 358 4 184 243 1020 
Scirtidae        

Cyphon spp. T61 9 28 0 13 11 61 
DIPTERA        

Athericidae        
Atherix spp. T62 3 19 2 4 1 29 

Blephariceridae        
Blepharicera spp. T63 48 34 1 54 208 345 
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Chironomidae 
- T64 65 30 105 106 15 321 

Simuliidae        
Simulium spp. T65 97 241 53 141 105 637 

Tipulidae        
Antocha spp. T66 2 3 0 53 0 58 

Hexatoma spp. T67 25 50 1 7 6 89 
TOTAL  2447 2541 250 3011 2111 10360 

Note: “-” identified until family level. 
 
Among the five sampling stations (Table 4), station S4 yield highest total abundance of 
aquatic insects (29.1%), followed by S2 (24.5%) and S1 (23.6%). Meanwhile, lowest 
total abundance recorded in station S3 covered only 2.4% of the total sample collected. 
In term of taxa richness, highest genera recorded in both S1 and S2, while stations S3 
had lower taxa richness. For Shannon’s diversity index, S4 station had the highest 
diversity. This is contributed by it more evenly distributed abundance among their taxa. 
As showed in Table 4, except evenness index, other three metrics were significantly 
different among the stations (p < 0.05).  

 
Table 4 

Total abundance, genera richness, Shannon’s diversity index and Evenness index of the five 
sampling stations. P-values for the statistical significance based on ANOVA and Welch ANOVA test 

 
Metrics S1 S2 S3 S4 S5 P 

Total abundance 2447 2541 250 3011 2111 0.000 
Genera richness 52 52 23 38 43 0.000 

Shannon’s diversity index (H’) 2.97 3.17 2.02 3.01 2.64 0.001 
Evenness index (E) 0.38 0.46 0.33 0.53 0.33 0.399 

 
UPGMA cluster analysis using Bray-Curtis distance (Figure 2) classified the five sampling 
stations into two groups. The station S3 had the most distinctive aquatic insect 
composition comparing to other four stations. Another cluster grouped stations S1, S2, 
S4, and S5 together, where the two disturbed stations S4 and S5 with higher similarity in 
aquatic insect composition. 

 

 
Figure 2. Dendrogram derived from UPGMA method of clustering with Bray-Curtis distance. 

 
Cluster analysis showed that station S3 had the most distinctive composition among the 
stations. This was expected as this station had the low taxa richness (23 genera) and 
taxa abundance (range from one to 105). This station also recorded the lowest diversity 
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(2.02) as illustrated by Shannon’s diversity index. Fai (2006) found an increase of 
Chironomidae abundance in Sg. Silau-Silau, which generally as a sign indicates 
perturbation. Another study on periphyton in the same stream (Ghazali 2006) reported 
an increase of periphyton diversity, which reflects the impairment of water quality. Small 
stream width and slow flow in this stream might limit the diversification of aquatic insects 
due to fewer habitats available. Besides, potential soil erosion areas were observed and 
fine sediment was spotted in the streambed. Sediment blocks light penetration through 
turbid water, and consequently reduced the oxygen produced by submerged 
macrophytes through photosynthesis (Dunlop et al 2005). Plecoptera taxa (Perlidae, 
Peltoperlidae, and Neumoridae) that relied heavily on high oxygenated habitats was not 
found in this station. Increasing sediments in running water inhibit their gills for 
respiration, while decreasing the stream turbidity prevent the vision of Perlidae to locate 
prey (Relyea et al 2000; Dunlop et al 2005; Dunlop et al 2008). Chironomidae that 
dominating in S3 is generally being used to indicate the presence of perturbation. As 
Chironomidae larvae contain hemoglobin-like pigments that retain oxygen (Hershey et al 
2009). This feature makes them to tolerate and capable of surviving in low dissolved 
oxygen polluted streams (Al-Shami et al 2010). 

 
Aquatic insects and environmental parameters. Based on Monte-Carlo analysis, the 
axes produced from CCA were statistical significant between the aquatic insect 
communities and their environmental parameters (p = 0.001). In particular, the first two 
CCA axes explain 22.6% of the variance of aquatic insect abundance and environmental 
parameters (eigenvalue of 0.238 for axis-1 and 0.147 for axis-2) (Table 5). 
 

Table 5 
First two axes of the CCA ordination for aquatic insect abundance and environmental 

parameters in the streams of Kinabalu Park 
 

Environmental parameters Axis 1 Axis 2 
Temperature -0.697 0.554 
Conductivity 0.259 0.548 

pH -0.017 -0.102 
Water velocity -0.303 -0.802 
Stream width 0.312 0.703 
Stream depth 0.176 -0.494 
Canopy cover -0.865 -0.205 
Eigenvalue 0.238 0.147 

Variance in species data   
% of variance explained 14.0 8.6 
Cumulative % explained 14.0 22.6 

 
CCA axis-1 showed that water temperature (r = -0.697) and canopy cover (r = -0.865) 
had the highest influence on the aquatic insect abundance (Table 5). Stream width and 
water velocity had high negative (r = -0.802) and positive correlation (r = 0.703) 
respectively to CCA axis-2.  

CCA analysis reveals that water temperature, canopy cover, stream width and 
water velocity influenced the distribution of aquatic insects in the streams of Kinabalu 
Park (Figure 3). Water temperature significantly affects abundance, diversity, and 
distribution of aquatic insects (Lessard & Hayes 2003; Burgmer et al 2007; Li et al 2012), 
as it influencing their embryonic development, growth, emergence, metabolism and 
survivability (Hauer & Hill 2006). Decreasing in temperature also increase the water 
capability to saturated dissolved oxygen, which highly influence the occurrence and 
distribution of pollution-sensitive taxa (Hauer & Hill 2006).   
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Figure 3. CCA ordination biplot between the aquatic insect abundance (+ mark) and the 

environmental parameters (lines). Taxa codes refer to Table 3. 
 
Small-scale human activities had less impact on aquatic insect communities, as the 
alteration of riparian structures were minimal. Lorion & Kennedy (2009) reported pasture 
land with at least 15 m riparian buffer zone significantly reduced the effects of 
deforestation on stream communities and resembled those found at forested reference 
sites. Removal of riparian buffer zone caused sedimentation that increase turbidity and 
narrow the stream width (Hawes & Smith 2005). In addition, riparian buffer area capable 
in filters, transforms, and sinks harmful nutrients and pollutants (Hawes & Smith 2005). 
This will slow the flow from directly entering nearby water bodies and deteriorate the 
water quality. This might explain why S4 and S5 similar assemblage as illustrated by 
cluster analysis, as the riparian buffer area observed in those stations remain almost 
untouched.  

Stream width showed weak positive relationships (R = 0.331, p < 0.05) with 
abundance while stream depth showed positive relationships with abundance and genera 
richness. Stream width and depth both related to stream size, as the both measurement 
increase from headwater streams to large rivers. Stream size had been reported to 
influence aquatic insect communities (Heino et al 2005; Dinakaran & Anbalagan 2007). 
Wahizatul et al (2011) also reported the positive relationship between aquatic insect 
abundance with stream width. Species richness of macroinvertebrates changes with 
stream size, which increases from headwater towards mid-sized streams (Minshall et al 
1985; Hershey et al 2009). These changes increase the in-stream environmental 
heterogeneity or availability of various microhabitats that promotes the coexist of taxa 
with different niche (Heino et al 2005).  
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The current velocity is generally related to the flow of the water bodies. In this study, 
majority taxa collected were fast-flowing dwellers or insects that adapted to running 
water. The most dominant taxa in this study, Stenelmis spp. (Elmidae) preferred 
substrate types of boulders and cobbles (Crips & Crips 1974), which could be found 
throughout each sampling station. Other taxa such as Heptageniidae, Psephenus spp., 
Platybaetis spp., Baetis spp. were adapted to fast flowing water through their 
dorsoventrally flattened and hydrodynamically streamlined body shape that provides 
resistance towards fast current (Giller & Malmqvist 1998). 

 
Conclusions. The streams of Kinabalu Park remain in good condition as indicated by 
Class I classification and biotic indices rating. Although there were slightly decrease of 
aquatic insect diversity occurred in stations near to human activities. Water temperature, 
canopy cover, stream width and water velocity shown to be influencing the aquatic 
insects communities in the tropical streams of Kinabalu Park.    
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