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 Abstract. Data from plankton surveys typically contain many zeroes. Pomacentrid larvae collected from 
the reef of Cabilao Island, Bohol, Philippines was typical of such data wherein 294 out of 354 tows had 0 
larval counts. This data is traditionally analyzed using the Poisson distribution in linear model. However, 
the Poisson model predicted far less zeroes and more missing pomacentrids than what is observed. To 
account for this kind of data, this paper examined other statistical distributions that can account for the 
extra zeroes and the missing fishes; these are negative binomial, zero-inflated poisson, zero-inflated 
negative binomial, zero-altered poisson and zero-altered negative binomial. We fitted these distributions 
and Poisson with location and moon phase as covariates to identify which of the model is suited for the 
data. The best model was selected based on having the lowest Akaike`s Information Criteria (AIC) score. 
The AIC result showed that the zero-altered negative binomial distribution (ZANB) with moon phase as 
covariate was suitable for the current data. The ZANB model showed that zeroes contribute a significant 
effect on abundance estimate; higher number of zeroes accounted for the significantly lower fishes 
observed in the first quarter than in the last quarter but not on the other moon phases. Excluding the 
zeroes, this difference is not statistically significant. Moreover, the ZANB model also was able to predict 
the actual number of zero and non-zero fishes better than the Poisson model, thus the tale of the 
missing fishes is explained by the inappropriateness of Poisson to fit data with many zeroes. 
Key Words: Zero count, zero-inflated, zero-altered negative binomial, hurdle, Philippines. 

 
 

Introduction. Count data from plankton surveys typically contain many zeroes. This 
data is referred to as “zero inflated” because the number of zeroes is so large (Martin et 
al 2005; Tu 2002; Heilbron 1994). The presence of many zeroes in the count data is a 
major challenge among plankton ecologists in estimating plankton abundance primarily 
because high zero counts may violate the assumption from the probability distribution 
used thereby resulting to incorrect interpretation of data. Additionally, the large number 
of zeroes created uncertainty in parameter estimation because these zeroes most likely 
decrease the effective sample size. 

The zeroes in the data can be categorized as “true” zeroes or “false” zeroes 
depending on the source (Martin et al 2005). The “true” zeroes happen when species 
were not observed either because the site was not suitable or the site was not entirely 
saturated with the said species. Conversely, the “false” zeroes occur when species inhabit 
the site but were not present during the survey or was present during the survey but was 
not observed.  

Count data from plankton survey, particularly ichthyoplankton, were most often 
analyzed using the Poisson distribution in linear model. However, the use of such 
approach may lead to incorrect inference considering the high number of zero counts in 
the data. In Figure 1a, the Poisson model predicted far less zeroes and more missing 
fishes than what was observed in the data. In this situation, the probability distribution 
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base on the Poisson model may be inappropriate if the zeroes are coming from both 
sources (Hilbe 2011).  

 
 

 
Figure 1. Histograph of Pomacentridae larvae, with predicted count based on a) Poisson and b) 
Zero-Altered Negative Binomial (ZANB) models. Model fitting using the Poisson distribution resulted 
to an underestimation of the percentages of zeroes as well as overestimation of some non-zero 
counts as compared with the zero-altered negative binomial distribution. Note that fish abundance 
data greater than 10 (max=67) were excluded in the figure for clarity. 
 
This study attempted to describe the abundance of ichthyoplankton, particularly the 
pelagic larvae of pomacentrids in Cabilao Island, Bohol, Philippines with substantial 
number of zero counts in the data. The objective is to introduce alternative statistical 
approaches suitable for ichthyoplankton studies with inherent “zero-inflated” nature in 
their count data. Since abundance estimates of ichthyoplankton is beneficial in the 
assessment of larva supply and recruitment episodes for stock assessment and 
management, inference demands high level of confidence from the results of estimation. 
 
Materials and Methods 
 
Data collection. Planktonic larvae of pomacentrids from Cabilao Island, Loon, Bohol, 
Philippines were collected with a ring-net (500-micron nylon mesh, 0.74m2 mouth area, 
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3.2 meters total length) that was towed parallel to the reef crest for eight minutes from a 
vessel traveling at a constant speed. The volume of water filtered by the net was 
measured using flowmeter. Samples were preserved in 4% borax-buffered formaldehyde 
and later identified, sorted and counted in the laboratory using a binocular dissecting 
microscope. 
 Sampling was conducted in three locations along the coasts of Cabilao Island 
particularly in Cambaquez fishing ground, Cabacongan Marine Protected Area, and 
Pantudlan Marine Protected Area (Figure 2). For each location, sampling was conducted 
at different moon phases (e.g., new moon, first quarter, full moon and last quarter). 
Although the current study also collected ichthyoplankton samples at night, nighttime 
samples were excluded in the analysis (n=23) considering that these were performed 
only during the full moon phase of the lunar cycle. A total of 354 plankton tows were 
conducted. In the actual data analysis, emphasis was on the ichthyoplankton data from 
family Pomacentridae considering that this group is an important component of the coral 
reef fish community of the island.  
 

 
Figure 2. Map of sampling locations in Cabilao Island, Bohol, Philippines  

(redrawn from map provided by ReefBase). 
 
Selection of probability distribution. Pomacentrid larval data was fitted using the 
maximum likelihood approach with the Poisson and 5 statistical distributions that can 
account for extra zeroes particularly the negative binomial, zero-inflated Poisson, zero-
inflated negative binomial, zero-altered Poisson and zero-altered negative binomial. The 
Poisson distribution is the standard approach to analyze discrete count data such as the 
data from plankton tows. The Poisson is described by the probability density function 
(PDF):  
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where μ is the mean and y is the count of fish per plankton tow. The Poisson distribution 
assumes that the variance is equal to the mean. This assumption is commonly often 
violated in ecological data where variance usually exceeds the mean (over-dispersion). 
Over-dispersion occurs especially if the data are zero-inflated because single distribution 
such as Poisson assumes that the zero values are only coming from one source, the true 
zeroes (Cameron & Trivedi 1998). 

An alternative statistical model for count data is the Negative Binomial. The 
Negative Binomial assumes that zeroes are only true zeroes, but could accommodate 
higher number of zeroes than the Poisson distribution. The PDF is given by: 
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where μ is the mean and θ is a scaling parameter to accommodate extra dispersion in the 
data (Zeileis et al 2008; White & Bennetts 1996). The negative binomial conforms to 
empirical plankton studies that show the variance exceeding the mean (Power & Moser 
1999; Cyr et al 1992). 

Data that are over-dispersed and with extra zeroes that cannot be explained by 
the Poisson or Negative Binomial distributions can be modeled by mixture models. 
Mixture models are two-component models combining a point mass at zero and a count 
distribution to account for extra zeroes in the observations (Zeileis et al 2008; Lambert 
1992). While zeroes from the Poisson and Negative Binomial are true zeroes, zeroes in 
the mixture models come both from the true zeroes and the false zeroes. The false 
zeroes is fitted with a Binomial distribution as the first component in the data analysis. 
The second component fits both the true zero and the non-zero data either with a 
Poisson or Negative Binomial distribution. The general form of the mixture model is: 
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where p is the probability that a species is absent, and g(y) is a known PDF describing 
the non-zero observation (Maunder & Punt 2004). Mixture models are also known as 
zero-inflated models and specifically referred to as Zero-Inflated Poisson (ZIP) or Zero-
Inflated Negative Binomial (ZINB) if g(y) is described by the Poisson or negative binomial 
distribution, respectively. 

Another approach in modeling over-dispersed data with extra zeroes is the use of 
two-part models. Two-part models are two-component models that treat the modeling of 
the zeroes separately from the non-zero values. The first component models the 
probability of the data being zero (absence) with a Binomial distribution. The second 
component models the non-zero values only using a zero-truncated probability 
distribution. The distribution is given by:  
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where p is the probability that zero fish will be observed (absence), y is the density of 
fish (number/200m3) and g(y) is the truncated probability distribution of a positive 
variable given that at least 1 fish was observed (Maunder & Punt 2004; O’Neill & Faddy 
2003). The truncated probability function is given in equation 5a and 5b for the Poisson 
and negative binomial, respectively:  
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  eq.  5 

In the equation above, y is the non-zero density of fish (number/200m3),  is the 
conditional mean value given that at least 1 fish was observed, and θ is a dispersion 
parameter. Two-part model is also known as zero-altered model and referred to as Zero-
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Altered Poisson (ZAP) or Zero-Altered Negative Binomial (ZANB) if the count distribution 
comes from the truncated Poisson or the truncated negative binomial respectively. Zero-
altered model is also referred as a hurdle model in the literature because a hurdle must 
be overcome for positive non-zero values to occur (Maunder & Punt 2004; Mullahy 1986). 

In this study, the ichthyoplankton data was modeled based on the four 
approaches with six statistical distributions: Poisson (P), Negative Binomial (NB), Zero-
Inflated Poisson (ZIP), Zero-Inflated Negative Binomial (ZINB), Zero-Altered Poisson 
(ZAP) and Zero-Altered Negative Binomial (ZANB). Modeling with the said probability 
distributions was implemented together with the covariates. 
Selection of covariates. To find any variation in the abundance of pomacentrid larvae 
in Cabilao Island in relation to the lunar cycle (moon) and location (area), these 
covariates were included as explanatory variables in the model-fitting process. Moon was 
categorized into 4 levels (e.g., new moon, first quarter, full moon, and last quarter) while 
area was categorized into 3 levels (e.g., Pantudlan, Cabacongan and Cambanquez). 
These covariates were structured as additive models (Ellison 2004) and fitted to the data 
with number of fish larvae observed per 200m3 as the response variable. The compound 
combination of covariates referred to as the maximal model is given by: 
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where Volume is included as an offset variable to account for differences in the amount of 
water filtered by the plankton net (min=43.66 m3, max=302.55 m3, mean=200.75 m3).  
The area and moon interaction was excluded due to unbalanced design. For two-
component models (e.g., ZIP, ZINB, ZAP, ZANB), the 1st component (binomial 
component) is also fitted with the same covariates in the same manner with the maximal 
model given by:  
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There were 4 covariate combinations for single distributions (e.g., P and NB) – area and 
moon, moon only, area only, and no covariate. There were 16 possible combinations of 
covariates for two-component models (e.g., ZIP, ZINB, ZAP and ZANB) with 4 
combinations in each component.  
Model selection. To identify which of the six distribution best fit the pomacentrid data, 
the Akaike`s Information Criteria (Akaike 1974; Burnham & Anderson 2004) was used. 
Akaike’s Information Criterion (AIC) is given by: 

KL 2))ˆ(ln(2AIC       eq.  8 

where ))ˆ(ln( θL  is the natural logarithm of the likelihood function evaluated at the 
maximum likelihood, and K is the number of parameters estimated in the model. Model 
with the minimal AIC score was selected as the “best” approximating model (Franklin et 
al 2000; Hobbs & Hilborn 2006; Burnham & Anderson 2004; Ellison 2004). AIC have 
been used to discriminate among probability distribution for identical set of regressors 
(Dick 2004) and in covariate selection (Burnham & Anderson 2004; Rooper & Martin 
2009; Ellison 2004). These approaches were combined by simultaneously discriminating 
between probability distribution and covariate together. A total of 72 models were 
examined from these combinations. 

Calculation of AIC scores and the corresponding maximum likelihood estimate 
were performed using the statistical computing language R (R Development Core Team 
2011). Fitting for Poisson model was implemented using the stat package (R 
Development Core Team 2011), Negative Binomial with the MASS package (Venables & 
Ripley 2002), and two-component models with the PSCL package (Jackman 2011; Zeileis 
et al 2008). Confidence interval for the fitted values was calculated from bias-corrected 
accelerated percentile interval (BCa) non-parametric bootstrap with 1999 replicates using 
the boot package (Fox 2002; Davison & Hinkley 1997; Canty & Ripley 2011). 
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Results and Discussion. AIC result for different combinations of covariates for each 
statistical distribution (Table 1) showed that the ZANB distribution had the lowest score 
of 532.9 (ZANB model 15), indicating that the said distribution model was more suitable 
with the pomacentrid data. Conversely, the Poisson model performed poorly among the 
six statistical distribution models considering that it attained an AIC score of 1199.4 
(Poisson model 3). The pomacentrid larvae collected by plankton tows near the coast of 
Cabilao Island is typical of ichthyoplankton data with substantially high zero count in 
addition to the fact that the count data itself is inherently positively skewed. Of the 354 
plankton tows, about 72-89% had zero pomacentrid larvae. It is expected that the 
Poisson model is inadequate in dealing with this kind of data as it cannot accommodate 
over-dispersed or zero-inflated data (Lewin et al 2010; Potts & Elith 2006). Our result 
confirm such observation and found that the ZANB was a much better model in dealing 
with zero-inflated data as compared to the Poisson model (Table 1). 
   

        Table 1 
AIC scores for different combinations of covariates for each statistical models 

(P=Poisson, NB=Negative Binomial, ZIP=Zero-Inflated Poisson, ZINB=Zero-Inflated 
Negative Binomial, ZAP=Zero-Altered Poisson, ZANB=Zero-Altered Negative Binomial) 

 
Model Covariates Probability distributions 

 Zero vs Non Zero Count P NB ZIP ZINB ZAP ZANB 
1  (None) 1319.9 549.6     
2  Area 1302.0 549.6     
3  Moon 1199.4 534.3     
4  Moon + Area 1181.8 537.8     
5 (None) (None)   901.6 551.6 901.5 546.7 
6 (None) Area   859.8 551.6 859.2 542.6 
7 (None) Moon   833.7 536.3 839.4 537.2 
8 (None) Moon + Area   819.5 539.8 821.5 539.5 
9 Area (None)   904.8 555.1 904.6 549.9 
10 Area Area   861.9 550.9 862.3 545.7 
11 Area Moon   836.9 540.0 842.5 540.3 
12 Area Moon + Area   821.1 543.4 824.6 542.6 
13 Moon (None)   897.5 549.9 897.3 542.5 
14 Moon Area   855.6 549.4 855.0 538.4 
15 Moon Moon   836.1 538.9 835.2 532.9 
16 Moon Moon + Area   821.1 541.3 817.3 535.3 
17 Moon + Area (None)   900.7 550.9 900.4 545.7 
18 Moon + Area Area   857.6 544.4 858.1 541.6 
19 Moon + Area Moon   839.3 537.1 838.3 536.1 
20 Moon + Area Moon + Area   823.0 538.8 820.4 538.4 

 
The ZANB model is not popularly employed in statistical analysis dealing with 
ichthyoplankton due to its complicated formula. However, the recent developments and 
availability of statistical programs makes it feasible to fit the ZANB distribution model to 
count data with many zeroes. The ZANB model had been shown to better explain the 
abundance of recreational catch data (O’Neill & Faddy 2003) and in temperate river 
fishes (Lewin et al 2010). Correspondingly, the result of the current study also suggested 
that the use of ZANB model was suitable for count data of ichthyoplankton with many 
zeroes. 

Lunar cycles are thought to regulate the spawning episodes as well as the 
subsequent dispersal of planktonic larvae of some marine fishes because of the tide and 
current regimes associated with it. As for the pelagic fish eggs and larvae, most often the 
pelagic dispersal is properly timed to assist its dispersal away from reef habitats to avoid 
predators and to colonize wider areas. For example, the spawning of Centropyge potteri 
(Jordan & Metz, 1912) (Pomacanthidae) occurred at dusk during the week preceding full 
moon where the difference in the height of the tide from high to low was greatest (Lobel 
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1978). Fishes under families Leptocephalidae, Bothidae and Labridae also showed 
positive correlation between hours of dark flood over new moon (Thorrold et al 1994). In 
Thalassoma bifasciatum (Bloch, 1791) (Labridae), larval settlement occurred around new 
moon (Victor 1986). In the family Pomacentridae, spawning and settlement also followed 
lunar cycles, as observed in Stegastes partitus (Poey, 1868), according to Robertson et al 
(1988) and Amphiprion melanopus Bleeker, 1852; peak in hatching of A. melanopus 
occurred 1.5 hours after sunset near full moon and new moon when the tide was high 
and the current was strong (Ross 1978).  

The result of the current study confirmed the differential effect of the moon on the 
abundance of pomacentrid larvae in the neritic waters of Cabilao Island. In the best 
model (ZANB model 15, Table 1), the covariate moon has a significant effect in both the 
absence-presence (χ²=10.22, df=3, p<0.01) and non-zero count (χ²=15.58, df=3, 
p<0.001) components of the ZANB. 

 In the absence-presence component, the percentage of zero count was higher 
during the first quarter (89.36%, CI=82.01–95.25) than in the first last quarter 
(72.37%, CI=61.95–81.82) and considering that their confidence interval did not 
intersect, such result was statistically significant (Figure 3a). On the other hand, the 
percentage of zero in other moon phases was similar. 

 

 
Figure 3. Predicted abundance of pomacentrid larvae with bootstrapped 95% confidence interval for 

a) percentage of zero count, b) non-zero density by excluding the zeroes, and c) over-all density 
including the zeroes. 

 
When the zero count of the data were deliberately excluded in the analysis (e.g. non-zero 
count component of ZANB), the abundance of pomacentrid larvae among the four moon 
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phases was statistically the same (Figure 3b). Conversely, by including these zeroes (e.g. 
by combining the result of the two components), the result was fairly different with 
cumulative abundance of pomacentrid being significantly higher in the last quarter (0.94 
fish/200m3, CI=0.52–1.55) than in the first quarter (0.15 fish/200m3, CI=0.07–0.29). 
Abundance of pomacentrids larvae during full moon (0.30 fish/200m3, CI=0.16-0.66) and 
new moon (1.67 fish/200m3, CI=0.28-7.37) were not statistically different from the other 
moon phases because of high variability in the data (Figure 3c). 

Most of the research conducted in the Philippines that deal with plankton focused 
on ecological characterization, such as in identification and description of species 
(Armada 1997; Blanco & Villadolid 1951; Wade 1951). Estimation of abundance are few, 
and if available is limited to over-all abundance, with no specific estimate for particular 
species or families. For example, Armada (1997) estimated that over-all plankton 
concentration ranges from 4 to 1,420 larvae per 100m3 in the Sulu Sea, while Dolar & 
Alcala (1993) reported density range from 0 to 56 per 1m3. This may be attributed to the 
difficulty in analyzing plankton count data with many zeroes. If researchers wanted to 
analyze abundance at the species or family level, the number of zeroes increases and 
estimation become complicated. 

The result of this study suggests that the use of statistical models such as zero-
altered negative binomial distribution can account for plankton count data with many 
zeroes. The selected ZANB model was able to predict the actual number of zero and non-
zero fishes better than the Poisson model, thus the tale of the missing fishes is explained 
by the inappropriateness of the later to fit data with many zeroes. Moreover, the zero-
altered models do not require the separation of the sources of the zeroes prior to 
analysis. Such separation is often difficult to meet in ecological studies dealing with 
ichthyoplankton due to limitations brought about by field conditions regardless of how 
careful the researchers are in collecting samples from the field. Finally, by separately 
modeling the zeroes and non-zeroes, it allows researcher to identify covariates that 
influence whether a species will be present or not as well as covariates that affect its 
abundance given it was present as demonstrated from the pomacentrid data.   
 
Conclusions. Our result showed that zeroes did matter in the abundance estimation of 
ichthyoplankton. When zeroes are removed in the statistical analysis, lunar variability of 
pomacentrid larvae was not statistically different. However, when zeroes are included, 
these differences are significant.  
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